
Programmer’s Manual

WebDNA
Software Corporation

© 2009, WebDNA Software Corporation

If you have any comments or suggestions about WebDNA, documentation or
online help, please send us an e-mail at administration@webdna.us

WebDNA Software Corporation
16192 Coastal Highway
Lewes, DE 19958

www.webdna.us

 WebDNA • i

About This Manual
The WebDNA Programmer Guide is designed for web administrators and
programmers with a minimum of some knowledge of HTML and web store
development.

A second manual, the WebDNA User Guide, provides product installation
and configuration information in addition to using other features of WebDNA.

Both manuals cover the Macintosh, Windows and UNIX versions of
WebDNA. Differences between the versions are noted in the text of the
manuals. However, the examples shown in this manual use the Windows
notation since the Macintosh and UNIX versions support this convention.

The following assumptions apply to users of the WebDNA Programmer
Guide:

• Knowledge of the WebDNA User Guide

• Familiarity with HTML and your current Web server

• Calling a CGI

• Suffix mapping

• URL encoding

This manual provides a technical introduction to WebDNA, the WebDNA
language, and a tutorial on setting up a shopping site from a programming
perspective. In addition, it provides a complete reference to the current
WebDNA language.

STRUCTURE
The WebDNA Programmer Guide provides the following information:

• Chapter 1 − Understanding WebDNA
This chapter introduces WebDNA and provides an overview of its
structure and usage. Use this chapter to understand the relationship
between WebDNA and HTML, and how WebDNA is processed by the
web server.

• Chapter 2 − WebDNA Tutorial
This chapter is designed specifically to walk you through an example

web site constructed using WebDNA without the aid of our automated
site creation templates. Use this chapter to understand how and when
WebDNA is used in addition to understanding its tremendous power
and flexibility.

• Chapter 3 − WebDNA Reference
This chapter provides a printed at-a-glance reference to WebDNA’s
tags, contexts and commands. Use it to determine which tag, context
or command to add for each function to be performed in your
environment. There is an HTML equivalent of this with your product
install.

• Chapter 4 − Advanced Uses of WebDNA
This chapter provides an introduction to more advanced WebDNA
topics like how to encrypt templates and securing your WebDNA web
site. Use it to better understand how WebDNA can do anything you
can imagine a web site doing.

• Appendices
This section provides file formats, a glossary, the WebDNA license
agreement, and technical support information.

CONVENTIONS
This manual and the WebDNA User Guide use the following conventions:

• WebDNA may be used interchangeably as a product line and as a
scripting language.

• Since WebDNA is often sensitive about space characters and
carriage returns, when giving specific code examples that should not
be broken, but do not fit on one line, the continuation on the next line
is indented.

• The following icons are used:

 Macintosh only

Tips

 Windows only

Important Notes

 UNIX only

 ii • WebDNA

 Programmer Guide • iii

Contents
About This Manual ... i
Structure... i
Conventions .. ii
Contents.. iii
CHAPTER 1 − UNDERSTANDING WEBDNA 1
What Is WebDNA?...1
WebDNA Benefits ...2
Definitions..2
Triggers ...3
WebDNA Tags ..3
WebDNA Contexts ..4
WebDNA Commands..7
WebDNA Parameters..8
Related Topics...10
HTML Forms ...11
Site Design..12
Database Design...13
Template Design ...14
Shopping Cart Transaction Processing ...15
Order Collection ..17
Order Processing ..18
Order Management ...19
Using a Text Editor vs. HTML Editor...19
Working with Tables..20
Using Contexts vs. Commands ...21
Searching ..21
Replacing Commands with Contexts..23
Logging Information ..24
CHAPTER 2 − WEBDNA TUTORIAL.. 26
WebDNA Theory of Operation ...26
What is WebDNA ..26
How WebDNA Acts on a Web Server Request27
Preparing Your Site for use with WebDNA ...28
Request Processing with WebDNA ..29
Development of the TeaRoom Database ..30
Tutorial: Overview ...30
The TeaRoom Database...31
Step 1: Entering the Site ...31
Step 2: Shopping for Products by Category..34

 iv • WebDNA

Step 3: Adding Items to the Shopping Cart...38
Step 4: Using the Shopping Cart Page ...43
Step 5: Using the Product Detail Page ...47
Step 6: Using the Purchase/Invoice Page ..51
Step 7: Acknowledging the Order ...59
WebDNA Lab ...60
Where to Go from Here?...61
CHAPTER 3 − WEBDNA REFERENCE 62
WebDNA 5.0 At-A-Glance Reference ..62
Searching...63
[FoundItems] Context..63
[LookUp] Tag...63
[Search] Context ...64
Search Command ...65
Searching Comparisons..66
[ShowNext] Context ..69
[SQL] Context..71
Databases ..73
[CloseDatabase] Tag ..73
[CommitDatabase] Tag ...73
[Append] Context ..73
[AddFields] Context...75
Append Command ..77
Delete Command ..78
[AppendFile] Context...79
[ExclusiveLock] Context ..81
[Delete] Tag...81
[FlushDatabases] Tag ...82
[ListDatabases] Context ..82
[ListFields] Context..83
[LookUp] Tag...83
[Table] Context..84
[Quit] Command ..89
[Replace] Context..90
Replace Command ...93
[ReplaceFoundItems] Context ..94
[SQL] Context..96
Shopping..98
Add Command ..98
[AddLineItem] Context...101
[Cart] Tag ..104
Clear Command ..104
[ClearLineItems] Tag...105

 Programmer Guide • v

[LineItems] Context ...105
NewCartSearch Command ...106
NewCart Command...107
[OrderFile] Context..107
[Purchase] Tag..110
Purchase Command ...110
[RemoveLineItem] Tag..117
Remove Command ...117
[SetHeader] Context..118
[SetLineItem] Context..120
ShowCart Command...122
[ValidCard] Tag ...123
Showing and Hiding..124
[HideIf] Context ...124
[HTML1] Context ...125
[HTML2] Context ...125
[HTML3] Context ...126
[If][Then][Else] Context..126
[ShowIf] Context..128
[Switch][Case] Context..128
ShowPage Command ...129
Dates and Times..131
[Date] Tag..131
[Format] Context ...132
[Math] Context...134
[Time] Tag ...140
Text Manipulation..140
[BoldWords] Context ...140
[Capitalize] Context ...141
[ConvertChars] Context...142
[CountChars] Context..143
[CountWords] Context...143
[ConvertWords] Context..144
[Decrypt] Context ..146
[Encrypt] Context...146
[Format] Context ...148
[GetChars] Context ...149
[Grep] Context...152
[Input] Context...153
[ListPath] Context..154
[ListWords] Context...156
[LowerCase] Context...157
[Middle] Context ..158

[Raw] Context..158
Raw Command ...159
[RemoveHTML] Context..160
[Text] Context..160
[UnURL] Context ...162
[URL] Context..163
[Uppercase] Context ...163
Passwords ...164
[Authenticate] Tag ...164
[Password] Tag ...165
[Protect] Tag..165
[Username] Tag ..165
Files and Folders...165
[AppendFile] Context...165
[CalcFileCRC32] Tag ..166
[CopyFile] Tag...167
[CopyFolder] Tag ..167
[CreateFolder] Tag ..167
[DeleteFile] Tag...167
[DeleteFolder] Tag ..168
[FileCompare] Tag ..168
[FileInfo] Context ...170
[ListFiles] Context..171
[MoveFile] Tag ..172
[RenameFile] Tag..172
[WaitForFile] Context ..173
[WriteFile] Context...173
Technical..174

[AppleScript] Context..174
[Command] Tag ..175

[DDEConnect] Context ..175
[DDESend] Context ...176
[DOS] Context..177

[Shell] Context...177
[ElapsedTime] Tag ..178
FlushCache Command ...178
[FlushDatabases] Tag ...179
FlushDatabases Command...180
[Interpret] Context ...181
[Object] Context ..182
Raw Command ...184
[Redirect] Tag..184

 vi • WebDNA

 Programmer Guide • vii

[ReturnRaw] Context...185
[Spawn] Context..185
[TCPConnect] Context ..186
[TCPSend] Context ...187
[Version] Tag...189
Browser Info ..189
[BrowserName] Tag ..189
[GetCookie] Tag ..189
[GetMIMEHeader] Tag ..190
[IPAddress] Tag ..190
[IsSecureClient] Tag..190
[ListCookies] Context ..190
[ListMIMEHeaders] Context ..192
[Referrer] Tag..193
[SetCookie] Tag ..193
[SetMimeHeader] Tag ...194
XML...194
[XMLParse] Context ..194
[XMLNodes] Context ...199
[XMLNodesAttributes] Context..201
[XSL] Context ..204
[XSLT] Context..206
Miscellaneous..217
[ArraySet] Context...217
[ArrayGet] Context ..218
[FormVariables] Context ...220
[FreeMemory] Tag...221
[Function] Context ...222
[Include] Tag ...223
[LastRandom] Tag...224
[ListVariables] Context ..224
[Loop] Context...226
[Platform] Tag..227
[Random] Tag ...227
[Return] Context ..228
[Scope] Context...231
[SendMail] Context..238
Header Fields..240
[ThisUrl] Tag..241
[Version] Tag...241
[!] Comment Context ...241
Using WebDNA Tags ..242
Preferences...242

 viii • WebDNA

Parameters..242
Italic Text ...243
Paths ...243
Form Variables..244
Using WebDNA Contexts ...244
Tag Parameters ..245
Context Parameters ..245
Context Variables..245
Using WebDNA Commands ...246
Command= Notation ...247
CHAPTER 4 − ADVANCED USES OF WEBDNA 249
Encrypting Templates...249
How to Encrypt Templates ..249
Encrypting the Header Tag ...250
Talk List Subscription and Archive...251
Using Shared POP Mailbox ..251
Generating Online Banner Ads..252
Dreamweaver Integration ...253
XML Syntax Explanation ..253
Security ..255
Macintosh WebDNA Security Notes ...256
Areas to Watch for security threats...262
Uploading Files ...262
WebDNA Content Management System ...263
What is WebDNA CMS? ...263
Using WebDNA CMS..264
Advanced WebMerchant Topics..266
Using Account Authorizer..267
Use of external accounting software with order files267
APPENDICES .. 268
File Formats...268
Database Format ..268
Shopping Cart/Order File Format..270
Browser Info.txt Format...271
Email Format...272
Formulas ..273
ISP Sandbox ..277
Pre and Post Parse Scripts ..281
Triggers..283
License and Limited Warranty Agreement286
Support...288
Glossary...289

 Programmer Guide • ix

Chapter 1 − Understanding
WebDNA

What Is WebDNA?
WebDNA is a scripting language for creating web sites. It adds functionality
to your web server. WebDNA is used to tell WebDNA products what to do. It
exists in HTML files on your server or within URL’s sent by your browser.

WebDNA on Server

WebDNA
Document

Web Browser

HTML
Document

Figure 1. WebDNA Overview

 Programmer Guide • 1

 2 • WebDNA

Unlike most Web sites where HTML pages are designed and accessed
directly, Web pages accessed from a WebDNA-driven site are processed,
otherwise known as interpreted, through WebDNA on a server before being
sent to the browser. WebDNA does not require any special client-side
applications or web browsers with special capabilities.

WEBDNA BENEFITS
WebDNA adds incredible power to any Web site! WebDNA’s syntax and
functionality lie between HTML and SQL. At the HTML end, WebDNA shows
its ease of use with its simple text file markup tags. At the SQL end,
WebDNA can be used to construct sophisticated database searches that
result in formatted output. Note: WebDNA does not contain a SQL server; it
contains its own native powerful database features, plus the ability to connect
to other SQL servers through an ODBC interface.

Additional WebDNA benefits include:

• Enhancement to existing web sites by readily integrating other HTML-
compatible languages.

• Requires 50% or less coding than the other leading languages,
making it faster to code and easy to maintain.

• Utilization of easy-to-learn programming concepts similar to Visual
Basic and C/C++.

By enhancing the best aspects of multiple technologies, WebDNA gives
Webmasters greater freedom to design dynamic and automated Web sites.

Definitions
The following WebDNA terminology is used in this manual and other
WebDNA documentation:

• Triggers

• Tags

• Contexts

• Commands

• Parameters

For a description of the specific WebDNA tags mentioned below,
refer to Chapter 3 − WebDNA Reference.

TRIGGERS
Definition: In WebDNA, a trigger provides a mechanism for doing something
on a regular timed basis, or when a certain action occurs. Currently, only
time-based triggers are available, but in the future new types of triggers will
be added to perform an action whenever a database is modified or a
template displayed.

Triggers do their work by simulating a browser hit to a URL. They act in the
same was as one who manually uses a browser to reload a page at a
particular time each day. Triggers provide the flexibility to create as much
complex WebDNA as needed. Once created, the WebDNA can be tested
through a browser that visits the subject URL. When a new template is tested
and verified, its URL is entered in to a trigger for a predetermined time
interval for automatic execution thereafter.

Unless otherwise specified, all WebDNA names are not case-
sensitive, just like HTML tags are not case-sensitive. By
convention, lowercase characters are often used, as they are
easier to type.

WEBDNA TAGS
Definition: A WebDNA tag is just like an HTML tag with one major
exception: It never “exists” as far as a browser is concerned. Instead, it is
replaced by text (any valid text) on the server by WebDNA before being sent
to the browser. Think of WebDNA tags as server tags, and HTML tags as
browser (client-side) tags. WebDNA tags are actually used to ‘write’ HTML
tags and any other text you need.

Like HTML tags that exist on their own, WebDNA tags are replaced with
some value. However, unlike HTML tags, the value used to replace a
WebDNA tag is dynamic and can change depending upon the situation. This
dynamic replacement makes your Web pages much more active and
interesting. It also means less time will be spent updating pages manually.

 Programmer Guide • 3

An example of a WebDNA tag is the current date on a page. In HTML, the
following is inserted:

Today’s date is 1/1/00.

However, in order to be accurate, the page would need to be edited every
day to insert the correct date; this amounts to a waste of time. What is really
needed is a way to insert the date once and have it update itself dynamically,
using the following WebDNA tag:

Today’s date is [date].

WebDNA tags are not enclosed by angle brackets (< >). Instead, WebDNA
tags are enclosed with square brackets ([]). Tags were designed this way
intentionally to avoid possible confusion between HTML tags and to make
code easier to read. In the above example, when a browser requests the
page, the [date] tag is replaced by WebDNA on-the-fly with the correct date
value. Thus, if today is January 1, 2000, the browser would display the
following text:

Today’s date is 1/1/00.

Plus, if you had HTML formatting to bold today wrapped around the word
“date”, the template could look like the following:

Today’s date is [date] .

All of your WebDNA tags are replaced by WebDNA with their proper values,
and any HTML tags are left intact before being returned to the browser:

Today’s date is 1/1/00.

Finally, the browser displays the text as:
Today’s date is 1/1/00

See Using WebDNA Tags in Chapter 3 for further information.

WEBDNA CONTEXTS
Definition: A WebDNA context encloses a block of text and requires a
beginning and ending tag. Like HTML enclosing tags, the ending WebDNA
context tag is specified with the name of the context preceded by a forward
slash “/”. Like WebDNA tags, contexts are enclosed in square brackets rather
than angle brackets as well. In a programming sense, the context implies a
scope.

 4 • WebDNA

 Programmer Guide • 5

The following displays an HTML sample with a WebDNA context example:
<h1>Daily Information</h1>

[showif [date]=01/01/2000]
Today is the first day of 2000
[/showif]

The [ShowIf] context hides or shows portions of text based upon a
comparison included in the beginning context tag. Because [ShowIf] is
executed on the server, if the equality is not true, then the text is not sent to
the browser at all.

However, you can include WebDNA tags within context tags. When this
occurs, the innermost tag is substituted before the outer tags and contexts
are evaluated. Thus rather than strictly comparing the raw text “[Date]” to
“01/01/2000” (which is always false), the value for the WebDNA tag [date] is
inserted before the comparison is evaluated. If the date equals “01/01/2000,”
then the expression is true and all the text between the beginning and ending
[ShowIf] tags is sent to the browser. The context tags themselves are, of
course, collapse and are replaced to the text sent.

Thus the output sent to the browser on 01/01/2000 would be:
<h1>Daily Information</h1>
Today is the first day of 2000

As said earlier, WebDNA allows nested contexts by enclosing a context
within a context. This lets you create very complex behaviors with
combinations of WebDNA tags. Another WebDNA context is the [Raw]
context that turns off WebDNA’s interpretation of tags. This is useful if you
are writing a description of a WebDNA tag and you want the raw text
displayed (and not interpreted).

For example, if you wanted to display the previous example on a page
without the [ShowIf] tag being evaluated, you could enclose it in a [Raw]
context. The HTML would appear as:

<h1>Daily Information</h1>
[raw][showif [date]=01/01/2000]
Today is the first day of 2000
[/showif][/raw]

The [Raw] context surrounding the [ShowIf] context changes the behavior of
[ShowIf]. Essentially, the [ShowIf] is not executed because the enclosing [Raw]
context turns off the WebDNA interpretation until the ending [Raw] tag. The
text sent to the browser would look like:

<h1>Daily Information</h1>
[showif [date]=01/01/2000]

Today is the first day of 2000
[/showif]

The [Raw] tags are interpreted and removed, and all the text in between is
sent untouched. This sort of context sensitivity is important both when
designing your site and when debugging your site if unexpected results
occur.

See Using WebDNA Contexts in Chapter 3 for further information.

 6 • WebDNA

 Programmer Guide • 7

WEBDNA COMMANDS
Definition: WebDNA commands direct WebDNA to perform various
functions. They are sent directly to the application via URL’s. WebDNA
commands are embedded in a URL and give an explicit context to a
particular template being displayed. The context is considered “wrapped”
around the entire template.

WebDNA tags and contexts are contained within HTML template files and
are evaluated before being sent back to a browser. When WebDNA is
evaluated within a template file, the URL leading to that template looks just
like a URL to a specific page. This means all the actions you want to perform
must be encapsulated within the template itself.

However, sometimes it is desirable to state what you want to do before
evaluating a template. This is done through the use of WebDNA commands.
WebDNA commands are embedded in a URL and give an explicit context to
a particular template being displayed.

An example is the search command. Since commands are specified in the
URL, they are not enclosed in square brackets. Commands are specified as
a parameter named “command” after the question mark.

The template being displayed is always described in the path before the
question mark. Thus a URL with the search command would look like:

http://www.server.com/entry.tpl?command=search&searchcriteria

When WebDNA sees this URL, it uses the “entry.tpl” template to display the
result of the search. If the command requires any parameters, they are
specified as name and value pairs after an ampersand (&) following the
command name and between each pair.

For the most part, there is a corresponding context for every command,
though the reverse is not always true since contexts are used in much more
complex situations. Also, commands are sometimes specified with slightly
different names and parameters due to their inherent differences.

When there is both a command and context that performs a specific function
(“search,” for example), the decision on when to use a command and when
to use a context is up to you. Because changing a URL in a browser is so
fast, often programmers use URL-based commands while debugging
complex search criteria, then once the desired results are found, they convert

http://www.server.com/entry.tpl?command=search&searchcriteria

the command to an embedded search context. This issue is discussed later
in Using Contexts Versus Commands.

See Using WebDNA Commands in Chapter 3 for further information.

WEBDNA PARAMETERS
Definition: A parameter modifies or defines a WebDNA tag, context or
command. For example, the [include] tag used to insert the contents of a file
at a specified location, needs to know where to find the file to include. In this
case, a parameter is used to specify the file location.

WebDNA uses two methods to specify parameters:

• Method 1: Tag or context requires a single parameter

• Method 2: Tag includes multiple parameters

Method 1: Tag or context requires a single parameter
This method includes tags or contexts requiring a single parameter. The
[showif] context falls into this category since it requires a single comparison
that must be evaluated. When a single parameter is required, that parameter
is placed in the beginning tag after the name of the tag. WebDNA is not
case-sensitive, but it is sensitive to extra “blank space” characters. This is
quite different from HTML, which often ignores extra space characters. After
the WebDNA tag name, a single space character is inserted before the
beginning of the parameter. Everything after the single space character is
considered part of the parameter. This sensitivity is necessary in case you
want to include spaces within a parameter itself.

When a single parameter is required, normally you just list the value for the
parameter after the space character. In the [showif] example, the parameter
is a comparison. Most of the time, however, the parameter is a path to a file
or database. An example of this is the [include] tag for including the contents
of external files within a template.

Review the following sample [include] tag:
[include header.html]

The parameter required for the [include] tag is the file that must be included.
In this case, the name of the file is “header.html”. All files and databases are
specified just like URL paths. That is, you can specify a relative path

 8 • WebDNA

 Programmer Guide • 9

beginning at the template being evaluated, or a full path from the root web
server folder. In order to specify a relative path to a file within folder, you
would insert the following:

[include myfiles/header.html]

A folder called “myfiles” must be in the same folder as the template
containing this WebDNA. Within that folder, a file named “header.html” is
inserted in place of the current WebDNA tag. If you had a global include files
folder in the root directory of your web server, you might specify the path as
shown below:

[include /myfiles/header.html]

On Macintosh and UNIX web servers, the preceding forward slash “/” means
that the path to the file begins from the root web server folder level no matter
where the current template exists. On Windows web servers, the preceding
forward slash “/” means that the path to the file begins in the same folder
where the program DBServer.exe exists. In both cases, however, the
preceding slash lets you specify global, as opposed to relative, locations.

Method 2: Tag includes multiple parameters
On the other hand, the [include] tag can sometimes include multiple
parameters. The only required tag is the path to the file. However, you can
also include an optional parameter to specify whether to evaluate the
included text for WebDNA. In doing this, you tell WebDNA whether to
evaluate the included file with a simple “T” or “F” (for true or false).
Obviously, you can’t just do the following:

[include header.html]

WebDNA doesn’t know where the end of the template ends and the true or
false begins. When you specify multiple parameters to a tag, context or
command, you must specify them in name/value pairs. That is, you must
specify the name of the parameter, followed by an equal sign “=” then
provide the value for that parameter. Multiple name/value pairs are then
strung together with the ampersand character “&” between them. If you have
done work with HTML forms, you may recognize this method of specifying
parameters. It is identical to the HTML method of specifying parameters
contained in a URL. This method was chosen because of its similarity to
HTML.

In the above example, the valid method for specifying the tag is:
[include file=header.html&raw=F]

 10 • WebDNA

The two parameter names are “file” and “raw”. These stay the same, but their
associated values vary. This allows you to pass as many parameters to the
context as you would like without creating confusion. In fact, the [include] tag
can often have more than two parameters. Note that this style of naming
each parameter (Method 2) is always preferable and reduces confusion
compared to unnamed parameters (Method 1).

Another example of this is the search command. Because the multiple
parameter specification is similar to that of HTML, the actual URL used to
perform a search might be shown as:

http://www.server.com/entry.tpl?command=search&db=prod.db
&eqskudata=1002&eqdescriptiondata=software

(Note the line break in the above example is only for readability on this
printed page. In a real URL you would never break the line in the middle).

Some characters are not valid in a URL. The same is true for parameters
passed to a tag or context. For example, the space character is not valid in a
URL. This character must be encoded before being used. This is done
primarily to ensure that the URL can be passed through all existing browsers
that may only recognize a limited character set. It is also important, however,
to reduce confusion. You can’t include the ampersand character “&” in the
value of a parameter since it would cause WebDNA to think a new set of
name/value pairs is coming up. Thus the ampersand character must be
encoded if it’s in the text for the value of a parameter.

Review Using Contexts vs. Commands for a full description of when and how
to encode parameters and other strings.

Related Topics
A variety of topics related to creating a WebDNA driven site need to be
described. These include:

• HTML Forms

• Site Design

• Database Design

• Template Design

http://www.server.com/entry.tpl?command=search&db=prod.db

 Programmer Guide • 11

HTML FORMS
Before creating a site with WebDNA, you need to know how HTML forms
work and the difference between the POST and GET methods. HTML forms
are the standard means by which a visitor’s browser sends information to the
server. All the data contained in a form, both hidden data and data entered
by the visitor, is collected, bundled, and sent to WebDNA via the web server.
An HTML form is simply a collection of <input> fields with an associated
name/value pair. The form’s data is sent to the server in a manner similar to
the name/value pairs used to specify WebDNA parameters.

In fact, when submitting a form with a method of GET, the data is submitted
to the server as a URL as if a big hypertext link was created with all the
name/value pairs contained in it.

A simple form can be shown as:
<form method=”get” action=”entry.tpl”>
<input name=”variable” value=””>
<input type=”submit” value=”submit”>
</form>

The action field of a form should contain a template with the proper Suffix
Mapping (the standard is for all filenames ending in “.tpl” to be sent to
WebDNA for processing). The text entered in the input field is sent as the
value of the field named “variable.” Because forms using the GET method
are actually sent through the URL, the value of the variable field is encoded
automatically by the browser before being sent.

Thus if you typed “a filename” in the input field, the browser would create and
link to the following URL:

...entry.tpl?variable=a%20filename

The browser inserts the question mark character “?” after the action name
and before the name/value pairs. Note that the browser encodes the values
of the parameters automatically when using the GET method. When there
was no WebDNA command explicitly specified, the showpage command is
assumed.

If the form was meant to perform a search, then the form and associated
URL would appear as:

<form method=”get” action=”entry.tpl”>
<input type=”hidden” name=”command” value=”search”>
<input name=”eqskudata” value=””>
<input type=”submit” value=”submit”>
</form>

 12 • WebDNA

What the browser URL looks

like:...entry.tpl?command=search&eqskudata=a%20filename

WebDNA makes all of the variables passed to a template via a form (in the
example above, the variable named “eqskudata”) accessible through
WebDNA tags. You can include the value of the eqskudata variable in the
entry.tpl template using the name of the variable surrounded by square
brackets. Thus you could create a [showif] context like the following:

[showif [eqskudata]=search criteria]...[/showif]

Like hypertext links, however, forms using a GET method are restricted to
256 characters of data. In other words, after the URL is created with all the
name/value pairs, the entire URL must be less than 256 characters. This is
acceptable for many situations, but if there is any possibility that the link will
be more than 256 characters you must use a POST method. Another
advantage of using a form method of POST is that the data in the form is not
visible in the URL. This can be especially useful if you use a lot of hidden
fields in the form (even fields hidden in a form are visible in the URL with the
GET method).

The following is a sample form using the POST method and the resulting
URL:

<form method=”post” action=”entry.tpl”>
<input name=”variable” value=””>
<input type=”submit” value=”submit”>
</form>

What the browser URL looks like:…entry.tpl

Notice that the parameters normally found after the question mark (the
<input> parameters) are not visible. With the POST method, the parameters
are sent outside the URL so they can contain as much data as necessary. As
far as site design is concerned, there isn’t any difference between working
with form method POST and GET (except the 256 character limit).

SITE DESIGN
The most difficult part of any webmaster’s job is overall site design. The
following sections are not rules that must be followed. Instead, they are
useful suggestions.

 Programmer Guide • 13

Step 1: Outline Your Web Site
In general, it is good to outline your web site in very broad terms to determine
its scope. This shouldn’t be the name and function of every page; instead,
outline 4-5 main areas of your site. While it’s good to plan for future
capabilities, don’t go too far in the future with your expectations. The Web is
a rapidly changing environment and sometimes waiting to dive in can lead to
unnecessary delays.

Step 2: Define the Steps Needed to Create the Site
Once you have a broad idea for what you want to do, establish the steps
necessary to create the site. If you have 4-5 main areas to your site, you will
probably need 4 to 5 steps to go through in order to create your site. Each
step should implement the basic set of functionality you need in each area.
Many times it is easier to take a simple framework and add to it than create a
complex framework the first time out.

Step 3: Begin Simply
Especially with sites driven by WebDNA, you should start simply, get the site
working, and then gradually make it more complex. This not only reduces the
amount of time necessary to get a version of your site up and running, but it
allows time for feedback to direct some of the development.

DATABASE DESIGN
A fundamental question with a WebDNA site is database design. Databases
play a central role in WebDNA and can be tremendously useful. If designed
properly, your site can be totally database driven and updated and modified
easily. However, if the database design is particularly poor, your site can be
very difficult to adapt to new demands of your site.

It is good to begin with a very simple database and gradually make it more
complex. Sometimes it is difficult to know when to use a database and when
to hard-code information. For example, suppose your home page has a
header at the top that lists your major site categories. This is likely
implemented as an [Include] file since it is usually used without modification
on many pages. Most sites have a limited number of categories that do not
change very often. In this case, it probably isn’t useful to make a “site
category” database to create the header.

 14 • WebDNA

However, you may have sub-headings that can grow continuously within a
particular category. For example, the “Product” category may start out with 2
products, then expand to 4 or 10 after 6 months. Initially, the temptation will
be to “hard-code” the products page with your existing products. As a first
implementation, this is fine. If you expect to add products frequently, though,
you might want to create a separate product database. The contents of the
product page could then be built from the database automatically. This
advantage lets you add new products and have your HTML pages updated
automatically.

Suppose you want to create a product database. Rather than try to anticipate
all the data you may want to store about the product, start out with a simple
database with one field: “name.” Create the product page displaying the
names of all the products in that database. It may not be the desired result,
but once it works, you will have overcome the major hurdles.

Next, add a field named “description” to the product database. Updating the
existing templates to display the new field should be very quick and easy.
Continue in this manner until you’re happy with the functionality.

Do not try to over-design your site from the start. This not only delays the
time it takes until you see it working (and seeing it work, even on a limited
basis, is the best motivation for finishing), but it can often turn out wrong and
waste a lot of time.

Any time you find yourself using the same data more than 2-3 times,
consider putting that information in a database. Pop-up menus, for example,
are often an area where people duplicate code repeatedly.

TEMPLATE DESIGN
Perhaps equal in importance to database design is template design.
Template design is important because it is in templates that the bulk of your
WebDNA code appears. As with databases, it is best to start simply and
gradually improve your templates until they work the way you want them to.
Because WebDNA (and HTML) are interpreted languages (evaluated on the
fly when the page is requested), they can sometimes be difficult to debug. If
the page doesn’t appear in the browser with the information you expect, it
can be difficult to track backwards and find the problem.

The easiest way to debug a template is to break it up into “snippets” of code
a few lines long and evaluate those smaller files to see if each returns the
results you expect. You can gradually “build” your page from these snippets

until your results are not as expected and then look at the last snippet you
added for problems. One of the difficulties in doing this is realizing that a
context can enclose a large amount of text. Because a context requires the
ending tag, it may be best to create the code snippets that include an outer
context with most of its interior deleted.

Gradually work your way downward or inward in order to complete the
template.

Shopping Cart Transaction Processing
Shopping Carts really have two stages they need to move through, Order
Collection and Order Processing. In general as a merchant you also need to
have tools to manage all of your orders, reporting and details. Order
collection and order processing are often tied very tightly together, the closer
this relationship the more chance that the merchant can be left high and dry
without order collect. The first rule in sales is to get the order and then let the
processing happen after the client commits to the purchase. In a web
environment, the closest transaction processing style to this is what we call
near real time processing. You want to give the user feedback on the
processing of their order, but you don’t want to get in the way of collecting
the order.

Figure 2. Real Time Transaction Processing

Invoice
Collection
Payment info

Processor

Thanks

In contrast, real time processing is a linear sequence of actions, as shown in
Figure 2. Once all the information for an order is collected from the customer
(except for paymentdetails), an invoice is generated and the user is asked for
payment information. All order information and the payment information is

 Programmer Guide • 15

directed to the merchant’s bank while the merchant is off to the side waiting
for the customer to return.

On approval of the order, the customer is redirected back to the merchant
with the approved notification, a thank you page is displayed to the customer,
and the merchant stores the new information that they have received about
this order. Under this type of processing style, the merchant is clearly not in
control of the transaction, especially if there is an approval problem, where
the merchant bank and the customer would continue an exchange while the
merchant continues to wait for the result.

Real time processing can be thought of in this way: imagine going to the
grocery store and picking up some items to purchase in a shopping cart.
Now, you bring the cart to the checkout counter. In order to buy the items,
you must talk to a representative of the bank to receive a slip of paper that
states you are approved to buy these grocery items. You then bring the slip
of paper back to the checker that has your cart of items but they have now
gone out on a break or gone home sick or you get lost on the way back to the
checker and the merchant looses the sale.

Thanks Timed

ProcessorInvoice

Order File

Figure 3. Near Real Time Processing

To avoid these pitfalls, the recommended technique of near real time
processing, shown in Figure 3. separates the issue of collecting the order
and processing the order. In this type of processing, an order is collected and

 16 • WebDNA

 Programmer Guide • 17

acknowledged by the merchant, then, an independent action of processing
and authorizing the order can occur. The customer typically is given a page
that automatically refreshes at regular intervals. That page (or template) is
written to indicate the status of the order while being processed, which
results in the indication of a good order (and a link to more details) or a bad
order (and a link to help to resolve the problems). In near real time
processing, the merchant is in control of all the information about the pending
sale and the customer does not have to wait around for the details of
processing but is provided with information about their order.

During order processing, merchant bank authorization is initiated by a trigger
(a WebDNA timed event) to receive the approval information from the
merchant bank. When this information is received, either positive or negative
about the order, it is stored back in the order file. WebMerchant further
indicates the status of the order by moving it to one of the following directory
folders upon receipt of the approval information from the merchant bank:
pending, completed, or problems

In near real time processing, you have behavior similar to that in everyday
life. In the grocery store example, the checker collects all the information
about your purchase and they do the running around to get the bank to
approve the sale, staying in control of the transaction.

ORDER COLLECTION
When the customer begins using the shopping cart, desired items are
selected and added to the cart. These carts are the beginning of order files
and until the shopper commits to the order, they are stored in the
ShoppingCarts folder. When the customer has finished collecting all the
desired items, he or she clicks the Submit Order (or equivalent) button. The
order is collected and processed through the use of WebDNA commands
and stored in the order file. The stage at which the order is in is further
indicated by what directory the order file is in. When the user submits the
payment information, typically the purchase command is issued in WebDNA
that moves the order to the Orders directory. This is where the order
processing timed event will look for the orders.

The order information is stored in an order file. It is a text file that contains
two key pieces of information; all contact information to fulfill the order (such
as account information, payment method and contact information) and the list
of ordered items. The contact information is at top of the order file and is
considered the header portion of the file. This is immediately followed by the
list of ordered items, considered the body of the order file. You can find more
details on this in the File Formats, Order File section.

 18 • WebDNA

Further, a good order processing environment needs to have a unique order
number for each order. WebDNA takes that approach one step further, the
order number is also the name of the order file. The order number is
generated through the use of our ‘magic’ cart form variable, [cart]. If this form
variable is not indicated, WebDNA gives it a unique number.

ORDER PROCESSING
Once the order has been completely collected and the user has received
their Thank You page acknowledging the order, the next trigger for order
processing will see the order in the Orders directory. Basically the processing
is just a timed event that looks at the Orders directory and attempts to get
authorization for each order sitting there, stores the result of the authorization
into the order file and moves the order file to the appropriate directory,
CompletedOrders or Problems. That trigger is calling the template,
Dopurchases.tpl in the WebMerchant directory of the store. For a more
complete discussion on triggers, see page 3.

Additionally there are intentional ‘hooks’ (places where you can insert custom
instructions) for other processing to occur in this process. There is a file
GoodPath.inc that is called when a positive authorization is received for an
order. You can place any WebDNA in this file that you want to happen when
a good order is received, such as adding to an import log for your accounting
package. An example of this is discussed in the Advanced Topics section
later in this manual. A similar hook is provided for the BadPath.inc.
Remember, all of these templates are open source, so you are welcome to
modify the entire flow if you like. By default each of the paths generate
emails are to both the customer and the merchant staff.

One issue of note here, the method of contacting the merchant bank is
determined by the payMethod of the order and the currently selected credit
card processor. A payMethod of CC will cause WebMerchant to look at the
selected credit card processor to tell it which WebDNA [include] file to call to
handle the communication. So should you want to add another processor
that is not currently listed, simply duplicate one of the existing ones and
replace the WebDNA with the technique needed to talk to the new processor.
Further, a payMethod of AC causes WebMerchant to directly call
AccountAuthorizer.inc to get the Authorization. A sample WebDNA include
file has been provided, and typically these are used for internal purchase
order or other non-credit card purchase approvals that talk to an existing
accounting system to determine the credit available for this customer.

Another example of using the hooks in the processing would be to
automatically do order fulfillment of unique serial numbers for each product

 Programmer Guide • 19

purchased. The included Storebuilder templates show one way to provide
this feature. Another use would be to export data to accommodate your
accounting database such as QuickBooks, PeachTree, Flexware etc or the
more generic databases of Oracle, Sybase, Paradox, and so forth.

ORDER MANAGEMENT
The ability to see how your business is doing is key to your survival.
WebMerchant is the tool to help you do this.

WebMerchant is written as an open source set of WebDNA templates. As
such, there are a variety of ways by which they can be set up and order
information can be displayed. WebMerchant order reporting and information
is accessed from the AdminOrders.tpl file in the WebMerchant directory.
Sales reporting by default is time-based; that is, today’s sales are reported
first then yesterday’s, then sales for the month.

Some of the modifications that can be made are, reporting for a particular
item or grouping of items, the popularity of an item (i.e., what is your hottest
selling product). Similarly, one may wish to report on the number of orders
that had problems that were resolved and completed versus the amount and
type of order problems in a given day, week, or month.

Using a Text Editor vs. HTML Editor
Designing templates involves both HTML and WebDNA. Because there are
many HTML authoring tools available to make the page layout significantly
easier than writing HTML tags by hand in a text editor, it is good to design
the template first in an HTML editor to make it look the way you want. If there
are areas such as tables to be generated by WebDNA, write out one row with
dummy data just so you can see the formatting.

Because WebDNA uses square brackets rather than angle brackets to
enclose its tags, you can often enter the WebDNA tags directly in the HTML
editor. However, you must be careful that the square brackets are not
encoded when the file is saved. You can check this by creating a new
document, placing the text “[date]” in the file and saving it. Open the file in a
‘raw’ text editor (not an HTML editor) and see if the square brackets appear
intact. If the brackets do not appear intact, you may still be able to enter
WebDNA tags in the HTML editor if it has a “raw” mode where you can enter
HTML it may not understand. Sometimes this data is stored without being
encoded. Perform the same test mentioned above, except enter the data in

 20 • WebDNA

“raw” mode. As a safety precaution, close the file, open it, and save it again
before checking the file in a text editor.

If the square brackets are still encoded then you will have to enter all the
WebDNA tags in a text editor. This task is not as tedious as one might think
because most of the formatting contained in the HTML design can be
finished before resorting to a text editor. For more options, see the section on
Dreamweaver integration for more about our alternative syntax for WebDNA
to work with more HTML editors (this needs to be reworded).

WORKING WITH TABLES
Another problem area can be with tables. Because WebDNA can be used to
create tables of variable length based upon data in a database, you will often
want to include the formatting for a generic table row within a WebDNA
context that lists the results of a database search. In order to do this, you
need to place the WebDNA in between the table heading tag and the first
row tag. This area is not a valid place for HTML, but it is a valid area for
WebDNA (it is valid because by the time a visitor’s browser ‘sees’ the page,
all of the WebDNA is gone and has been replaced by HTML tags).
Unfortunately some HTML editors do not allow you to place any tags here
(even though they will be removed before the file is sent to the browser that
views the WebDNA file). Review the following example:
[search ...]
<table>
[founditems]<tr><td>[name]</td></tr>[/founditems]
</table>
[/search]

Again, if your HTML editor is not able to place tags in a particular location,
you will need to open the file in a text editor and manually add the WebDNA
tags.

 Programmer Guide • 21

Using Contexts vs. Commands
Because WebDNA offers multiple methods for performing certain functions,
like searching a database, it is not always easy to know when to use a URL
command and when to use an embedded context.

In general, using a command whenever possible is less work since you don’t
have to build up the search context on the result page. The input form that
initiates the search is used by WebDNA to build an implied search context for
you. As with most things, however, there is a trade-off between ease of use
and flexibility. Fortunately though, you have the ability to do both.

Although it requires more work, it is recommended that you use contexts
instead of commands. Contexts allow you to control the reaction of your
template better if the visitor changes the URL by hand. Contexts also allow
much more security over the data you are returning.

If you use contexts, you will still need a input form that collects all the
necessary search information. The results page will then have a [Search]
context using the variables submitted from the input form. For example, the
input form might look like the following:

<form method=”post” action=”results.tpl”>
<input name=”search_data” value=””>
<input type=”submit” value=”submit”>
</form>

The [Search] context in the results template would then look like this:
[search db=databasename&eqskudata=[url][search_data][/url]]
...
[/search]

SEARCHING
Now that you have seen some situations where commands have advantages
over contexts, review the following tips on how to use contexts in a way that
retains the flexibility of commands but without their inherent weakness (i.e., a
command is susceptible to being modified via the URL or form data that
could lead to unwanted actions).

Searching represents a context and command where the parameters can
vary wildly. Oftentimes, you will want to search a single database in many

 22 • WebDNA

ways. The search command gives you this flexibility since you can pass
different parameters based upon where the search request comes from.

For example, review the following three different hypertext links:
<a href=”results.tpl?command=search&db=products.db&max=1

&eqCATEGORYdatarq=software&asSKUsort=1”>
<a href=”results.tpl?command=search&db=products.db&max=1

&woDESCRIPTIONdatarq=fast&asSKUsort=1”>
<a href=”results.tpl?command=search&db=products.db&max=1

&eqSKUdatarq=1106A&asSKUsort=1”>

All three of the above hypertext links search the database in a different way.
The first finds all products in the Software category, the second finds all
products with “fast” in the description field, and the third finds a particular
product by its SKU. Because the search parameters are not hard-coded on
the results.tpl page, you have a lot of flexibility.

This flexibility contrasts with the use of an embedded [search] context on the
results.tpl page.

For example, you could use a [Search] context in the following way:

Results.tpl:
[search db=products.db&max=1&asSKUsort=1

&eqCATEGORYdatarq=[url][category][/url]]
...
[/search]

This reduces the size of the URL necessary to link to the results page and
does not allow hackers to change the database parameter or max value as
they could in the search command example. However, there isn’t a clean
method (as it is currently written) to search by keyword or SKU as you could
in the previous example.

Fortunately, you can achieve the same flexibility with the [Search] context,
while still retaining much of its security, by simply using a different syntax.
For example:

Results.tpl:
[search db=products.db&max=1&asSKUsort=1&[formvariables

name=__&exact=f]
[getchars start=3][name][/getchars]=[url][value][/url]
[/formvariables]]
[/search]

 Programmer Guide • 23

In the above example, all the variable search parameters are placed in the
URL and all the constant search parameters (e.g., db, max, sort) are in the
context. Additionally, two underscores were added in front of the search
parameter names in order to make it easier to use the [formvariables] context
to find just those parameters inside the context. This provides the flexibility of
searching the database in many ways, but removes many unnecessary or
constant parameters from the URL. It also provides secure access control to
the products database more fully.

Why were two underscores chosen? First, they are unobtrusive and don’t
significantly change the way the parameters are named so you can still read
and understand the URLs. Secondly, it is very unlikely that other parameters
will include two underscores (so when we loop through the [FormVariables]
that contain two underscores we can be assured that the parameters are
meant for the [Search] context).

Lastly, we can always get the original parameter name by simple removing
the first two characters. Note that when we add these variables to the
beginning context tag, we use the [GetChars] context to remove the preceding
underscores since the [Search] context doesn’t understand them with
underscores.

Of course, this technique can be used in many other situations than the one
described here.

Replacing Commands with Contexts
Using the shopping cart commands as an example, this section describes
how to replace the add/remove/showcart commands with embedded
contexts. Typically, you have a single shopping cart page to display the
current contexts of your cart. Using one of the shopping cart commands, all
pointing at the same page, you could either add a product to the cart, remove
a product from the cart, or show the contexts of the cart (using showcart).

For example:
<a href=”shoppingcart.tpl?command=add&cart=[cart]

&db=products.db&sku=1106A”>
<a href=”shoppingcart.tpl?command=remove&cart=[cart]

&db=products.db&index=1”>

The shopping cart page can then just have an embedded [LineItems] context
to show the current contents of the cart.

 24 • WebDNA

You might be tempted to use the shopping cart contexts, [AddLineItem],
[RemoveLineItem], and [OrderFile] to perform the same functions on three
different pages: addcart.tpl, removecart.tpl, and showcart.tpl. The reason for
doing this is because you didn’t want the [AddLineItem] context executed
when removing from the cart and so forth. Fortunately, you can use the
[ShowIf] context and a custom action/command parameter to get the flexibility
of commands on a single page.

Here’s how:

 shoppingcart.tpl:
[orderfile cart=[cart]]
[showif [action]=add]
[addlineitem cart=[cart]&db=products.db&sku=[sku]][/add lineitem]
[/showif]
[showif [action]=remove]
[removelineitem cart=[cart]&db=products.db&index=[index]]
[/showif]
[lineitems]
[/lineitems]
[/orderfile]

Seemingly, all that has been changed is the parameter name from
“command” to “action”. However, a lot more has been done. First, the name
“action” was used because it has no internal meaning in the WebDNA
language (unlike the name “command”, which does have a special meaning).
Second, using the [ShowIf] context to add and remove items from the cart
using embedded contexts provides the ability to hard-code certain
parameters that don’t change (such as the database value).

It is also possible to combine the technique introduced in Part 1 with this
technique to create a single page that appends, deletes and replaces records
from a database.

LOGGING INFORMATION
One of the most important functions of a Web site is its ability to collect and
log information about the people accessing it. Web servers often have
logging capabilities built-in, but the log can contain information that is not
very detailed or specific to your particular needs.

Fortunately, with WebDNA and WebDNA, you can easily create detailed logs
to store all the information you could possibly want about visitors to your site.

 Programmer Guide • 25

You can even have multiple logs that don’t contain a lot of extraneous
information.

Log files are created as simple text files using the [AppendFile] context. A very
simple log will collect the IP address of every visitor to your home page.
Although this information can usually be obtained from your web server log,
the WebDNA log can be more useful as it ignores requests for graphic files
and other information you may not want.

Adding the following WebDNA to your home page will create a custom log
file for you as shown below:

[appendfile user.log][ipaddress]
[/appendfile]

The file “user.log” will have the IP address (followed by a carriage return)
written out for every visitor to the page that contains the WebDNA
mentioned. You should see how you can easily create a custom log that
stores all the search information coming from a particular form as well.

Logs are usually created for use as databases to other WebDNA functions.
This lets you evaluate the data you collect much more easily. As you learn
more about WebDNA you may wonder why WebDNA database commands
were not chosen to add information to the log (the [AppendFile] context simply
writes text to the end of a file). The reason is speed. Writing text to the end of
a file is much faster and more RAM efficient, than reading a database and
adding records to it. Because the log files/databases can be very large, small
improvements in speed and RAM requirements make a big difference when
they are implemented.

Chapter 2 − WebDNA Tutorial
This chapter provides information and instruction on the following issues:

.

.

.

.

.

WebDNA Theory of Operation

Conceptual Development of the TeaRoom; a web site for a retail
business

WebDNA Theory of Operation

Web Server

 WebDNA

Client
Browser

Figure 4. WebDNA/Web Server Interaction

WHAT IS WEBDNA
WebDNA is literally a text processing engine that responds to incoming web
browser requests from a Web Server, as shown in Figure 4. A browser
request originates from the user in the form of

Hitting a web page

Performing a query for information, such as a keyword search, or

Performing a submit action to retrieve information, such as a quote on
an item, or a subtotal on an added item in a shopping cart.

Prior to a request, WebDNA exists in a waiting state.

 26 • WebDNA

 Programmer Guide • 27

HOW WEBDNA ACTS ON A WEB SERVER REQUEST
From WebDNA’s perspective, an incoming web server request is a request to
merge the text in the template with the incoming information, similar to the
earlier computing days when a form letter drafted in a word processor was to
be merged with a list of names to which the letter would be sent. For
example, using a template to put in today’s date, in WebDNA, the variable
[date] is used to substitute an incoming date request on an html form. The
WebDNA date tag then reads the system clock for today’s date and replaces
the [date] text in the template with the current date. Similarly, WebDNA would
process a search request from a Web Server for a name, say John Smith.
This name would be passed as a form variable ‘name = John Smith’. The
template that the browser is hitting would have full use of the form variable
[name] and it would be replaced with John Smith wherever that is used in the
template. So, if the function of the template is to search a database for the
name John Smith it would look something like this in the template:
[search db=people.db&eqPERSONdatarq=[name]]
[founditems]
[PERSON]

[ADDRESS]

[/founditems]
[/search]

Given a database, people.db that has the fields of person and address, the
above would give you a list in your HTML of those matching records showing
the name of the person on one line and the address on the next, then a blank
line between each record.

As another example, to add text to the end of an arbitrary text file, put an
[AppendFile] context into a template. AppendFile creates a new file if one
does not exist already. All text is put at the end of the file, after any data that
may already be there.

Note: AppendFile does not ‘understand’ databases. If you want to append a new
record to the end of a database, use Append instead.

 [AppendFile file=SomeTextFile]Hello, my name is Grant. The time is [time]

This is a second line[/AppendFile]

The text file “SomeTextFile” opens, and the text
Hello, my name is Grant. The time is 13:43:01. This is a second line.

 28 • WebDNA

is written at the end of the file. Notice that carriage returns inside the context
are written to the file exactly as they appear. Also notice that any WebDNA
[xxx] tags inside the context are substituted for their real values before being
written to the file.

Security Note: By default, all files created by WebDNA on Macintosh and UNIX web
servers are tagged with a special code or file permission telling your web server not to
display them via URL. If you want files to be visible to outside browsers, use the
optional settings below. To further protect your files, refer to the security section.

Parameter Description

secure

“T” for files that should be secure—web server will not display
them
“F” for files that should be visible via URL—web server will
display them
Example: [WriteFile secure=F&file=SomeFile]...[/WriteFile]

file The name (or relative path) of the file to create.

PREPARING YOUR SITE FOR USE WITH WEBDNA
When designing your web site, there is no particular order of what is needed
first from WebDNA’s point of view. You can set the form, the look and feel of
the web site, before building the functionality that will be used to showcase
your products and transact with a customer’s shopping cart to process an
order. Alternatively, you can first put in the functionality you desire from the
WebDNA templates and lay out the form of your web site.

However, from an order flow point of view, it is good to think of your site in
the same way one might think of a fax conversation. For example, if you
receive a one-page order form from a company by fax, that page may have
all available items for sale. You can check the quantity desired for each listed
item and select all desired items and assign a cost for each item listed. There
might even be a place to add the appropriate sales tax for the area you are
located. All this information can be filled out but the vendor will not know of
your order until you fax it back to them. So you do just that.

You were not able to figure out the shipping and handling since this field was
not included on the form for good reason; shipping costs vary by location and
the vendor does not want to burden you with that detail. Instead, the vendor
receives the order, logs it in to their system, and then receives the shipping
and handling costs back from the system based on the shipping address you

 Programmer Guide • 29

provided. The vendor then faxes the confirmation of your order with the
added shipping and handling costs back to you for your approval. You look
over the order information and accept the final figures. You fax back the
approved order and the credit card information you provided with the order
form is used to bill you for the order.

In the same way as the fax example described above, WebDNA will act upon
requests received from the browser. In order to receive a request, the user
will fill out the order form and submit the order to your Web Server. In turn,
the Web Server moves the order request to WebDNA where the request is
processed. The processing is performed with WebDNA code.

REQUEST PROCESSING WITH WEBDNA
As indicated in Chapter 1, a WebDNA command directs WebDNA to perform
an action that fulfills an incoming web server request and responds to the
web server with the results from the interpreted template. In this context,
WebDNA does what it is told to do; such as:

.

.

.

.

return the results of a database search

return detailed information to be displayed to satisfy the client request

return updated price information for an amended order

or anything else you can think of.

WebDNA’s behavior can be thought of in the same way a person in the US
Army behaves; they act upon and follow orders to the letter; doing what they
are told in the exact way in which they are told. Therefore, it is important to
realize that when you don’t get what you expect in processing, the source of
the error in what you are telling it to do will usually be found outside of
WebDNA. For example, if an unprintable character is sent to WebDNA, an
otherwise expected printed character will not display. Some characters may
be printable on a Macintosh machine but not on a Windows machine.
Similarly, a Macintosh machine uses a carriage return character only at the
end of each line. A Windows machine uses a carriage return and a line feed.
Formatting problems will occur between platforms causing display and
printing problems to some users. Therefore, it is important to consider the
behavior of text between different computer platforms.

 30 • WebDNA

Development of the TeaRoom Database
This part of the WebDNA tutorial is intended to help you learn how to set up
your own web commerce site using the TeaRoom templates included in your
WebDNA package. The tutorial guides you through the creation of an
imaginary eCommerce site, called the TeaRoom, which allows visitors to:

.

.

.

Search for products in a database.

Choose the ones they want from the list of found items.

Purchase the products they have chosen over the Internet.

While you are learning how the site is constructed, you will learn a variety of
WebDNA concepts and issues laying the foundation for more advanced
concepts and techniques. The WebDNA code provided in this example
shows an alternative syntax from the [xxx] square-bracket style shown
elsewhere in this manual. This syntax is called ‘XML’ syntax because it more
closely resembles the style of tags that newer graphical HTML editors (such
as GoLive, CyberStudio and Macromedia DreamWeaver) can understand.
WebDNA works with both the ‘classic’ syntax and the newer XML syntax.
The newer syntax is provided mainly to help graphical HTML editors display
and edit WebDNA templates without their annoying habit of destroying
embedded square brackets in your WebDNA code. Because the new syntax
looks so much like HTML, editors tend to leave it alone rather than rewriting it
into what they ‘think’ is proper HTML.

Classic syntax: [include file=fred.inc&raw=t]

XML syntax; <DNA_include file=”fred.inc” raw=”t”>

The best method for going through the TeaRoom tutorial is to run your web
server software and browser on your web site development system, then
play the role of a shopper as you study the explanations of the HTML and
WebDNA that are used to create the site.

TUTORIAL: OVERVIEW
Tom and his wife Katy live in southeastern Vermont. Katy runs a tearoom
and gift shop. Tom supplements his income as the pastor of a small church
by substitute teaching and Internet consulting. He has already created a
successful commercial site for a software company, but customers must
email or call an 800 phone number to place their orders.

 Programmer Guide • 31

Because Katy’s business is seasonal and relies substantially on tourism,
Tom and Katy have decided to make some of the teas and gifts that the shop
sells available to Internet customers. Tom also thinks that his software
company might be interested in reducing their 800 number calls and shipping
expenses by accepting and delivering orders with the WebDNA solution.

THE TEAROOM DATABASE
Tom has created a database of the products they are going to sell in a
database program and exported it as a tab-delimited text file. Because his
database program did not export the field names along with the data, he has
added the database field names as the first record in his database.

The following example shows the field names and the first record of the
database. “<tab>” represents the tab character required between each field,
and “<cr>” represents the carriage return required at the end of every record.

SKU<tab>Title<tab>Description1<tab>price<tab>taxable<tab>
CanEmail<tab>UnitShipCost<tab>UnitShipWeight<tab>
Ingredients<tab>Description2<tab>Description3<tab>
Category<tab>CatPageNum<tab>HasPhoto<tab>HTMLFontColor<tab>
PhotoName<cr>

10001<tab>All Day Breakfast Tea<tab>Keemun, a small and robust leaf, is only
cultivated in Anhui province, a region of Southern China where the
mountains are covered with teabushes. With its haunting flavor and sweet
aroma, this special leaf has come to be known in the trade as “orchid”
Keemun.<tab>10.00<tab>T<tab> F<tab>0 <tab>0<tab>Finest China
Keemun and Silver-Tip Formosan Oolong Tea Leaves<tab>Beyond English
Breakfast<tab>World’s Finest Breakfast Tea Leaves<tab>Black
Teas<tab>9<tab>T<tab><tab> 10001.jpg<cr>...

STEP 1: ENTERING THE SITE

The entry point to our on-line store is the first page. To get there, type the
following URL into the location field of your browser:

http://< your server >/WebCatalog/TeaRoomXML/Entry.tpl

Your browser will display the TeaRoom home page, as shown in Figure 5.

Most of the time when entering a real store, you expect that the storekeeper
will have organized the displays into various departments, sections or
categories. You are going to do the same thing with the first page of your on-
line store.

http://</

You are also going to learn how to make your commerce site creation
activities more efficient by using WebDNA’s <DNA_Include> tag to add
elements repeated on all of your templates such as logos and addresses.

Figure 5. TeaRoom Home Page

Review the following description of the Entry.tpl page shown in the prior
HTML page sample.

Entry.tpl

01| <!--HAS_WEBDNA_TAGS_XML-->
02| <HTML>
03| <HEAD>
04| <TITLE>Welcome To Rose Arbour - Come on In!</TITLE>

 32 • WebDNA

 Programmer Guide • 33

05| </HEAD>
06|
07| <DNA_Include file=”TeaRoom_Header.inc”>
08| <P>
09| <CENTER>
10| <IMG SRC=”<DNA_include

file=”ImagePath.inc”>TeaRoomImages/WinterPorch.jpg” WIDTH=”175”
HEIGHT=”281”>

11|
12| <H1>Welcome to our Store!</H1>
13| </CENTER>
14| </BODY>
15| </HTML>

 The suffix for this page has been set to “.tpl”. When the web server detects
this suffix, it knows that the page should be processed by WebDNA before it
is returned to the visitor’s browser.

Line 01| tells WebDNA the page contains WebDNA and should be processed
before being returned to the browser, and that this template is in the XML -
style syntax.

Lines 02| to 06| are all pretty much standard HTML. They define the <HEAD>
section of the page and the title that will be displayed by the browser in the
page’s title bar.

Line 07| uses the WebDNA <DNA_Include> tag to instruct the browser to use
the text in a file called “TeaRoom_Header.txt” as if it were an integral part of
the HTML of this page. (There could be WebDNA tags in this file as well and
they would also be interpreted just as if they were part of the page.) The file
includes the following HTML:

<BODY BGCOLOR=”#FFFFCC” TEXT=”#003399” LINK=”#CC33FF”>
<CENTER>
<IMG SRC=”TeaRoomImages/RA_Title.GIF”
WIDTH=”547” HEIGHT=”144”>
<IMG SRC=”TeaRoomImages/RA_Address.GIF”
WIDTH=”468” HEIGHT=”72”></CENTER>

Because every page in this on-line store should contain the information
defined by this HTML (It simply sets the background, text, and link colors and
includes images of our store logo and address.), include this file on every
template to save the effort of having to type it each time you create a

template. Lines 08| and 9| are also ordinary HTML including and centering an
enticing image inviting people into our store.

Line 12 actually does something WebDNA related. The hypertext link beginning
with “<A HREF” requests the web server to serve the page titled “Search.tpl”.

12| Welcome to our Store!

The <A HREF> hypertext link instructs the web server to return a page
named “Search.tpl”. since the name of the requested page ends in the suffix
“.tpl” and the web server has been set to treat requests for pages ending in
“.tpl”.

STEP 2: SHOPPING FOR PRODUCTS BY CATEGORY

It is now time for the customer (you) to enter the store. Click on the Welcome
to Our Store hypertext link and your browser will display the following page,
as shown in Figure 6.

Figure 6. TeaRoom Product List

 34 • WebDNA

 Programmer Guide • 35

The HTML and WebDNA for the Search.tpl page is displayed as:
01| <!--HAS_WEBDNA_TAGS_XML-->
02| <html>
03| <head>
04| <title>Let’s Go Shopping!</title>
05| </head>
06|
07| <DNA_Include file=”TeaRoom_Header.inc”>
08|
09|

10| <CENTER>Thank You for Coming In!

11| <hr width=300>
12| Welcome to Rose Arbour’s online store.

13| We are committed to providing you with

14| the finest in teas, tea accessories, and gifts.
15| <hr width=300>
16| Product Categories

17|
18| <DNA_search db=”TeaRoom.db” geSKUdata=”0” Categorysumm=”t”

asCategorysort=”1”>
19| <DNA_foundItems>
20| <a

href=”Results.tpl?cart=<DNA_cart>&category=<DNA_url><DNA_Catego
ry></DNA_url>&startat=1”><DNA_category>

21| </DNA_foundItems>
22| </DNA_search>
23|
24| <hr width=300>
25| </CENTER>
26| </BODY>
27| </HTML>

Lines 01| to 13| are straightforward HTML including only the old friends <!--
HAS_WEBDNA_TAGS_XML--> and the <DNA_Include> tag for the logo and
address.

Lines 10| to 17| add and format some text ahead of the list of product
categories.

Lines 18| to 22| contain the WebDNA tags to display and format, and a search
for all the categories listed in the database. The returned results are also
wrapped in WebDNA tags letting us click on each of the items in the category
list to search for and return a list of the products in the product database
belonging to that category.

 36 • WebDNA

The search context has several parameters, all of which are defined as
parameters listed after the context name. Their purpose, in this case, is to do
the following:

.

.

.

Search for all the products in the on-line store’s TeaRoom.db database.

Summarize what was found by the product categories defined in the
product database.

Sort the found categories in ascending order so they will be displayed
alphabetically on the returned template, Search.tpl.

Further analysis of these parameters can show you what they are actually
doing. The geSKUdata parameter instructs WebDNA to search the SKU field
in the TeaRoom.db database for any data with a value “ge” (greater than or
equal to) 0. This assumes that no product in a real database would have an
SKU of 0.

The Categorysumm=T parameter tells WebDNA to search all the records in
the database and to summarize every unique value it finds in the Category
field. When it displays the results of the summary, it will only show the unique
values in the Category field. Because every product’s Category field has an
identical entry for that category, the resulting display will be a simple list of
the categories in our TeaRoom.db database.

However, because most of us are used to seeing lists organized either
numerically or alphabetically, the following was used: Categorysort=1 and
the Categorysdir=as (where “sort=1” is the sort order when sorting on
multiple fields and “sdir=as” is the sort direction) to instruct WebDNA to sort
the Categories found in ascending alphabetical order.

Lines 19| and 21| define a <DNA_foundItems> context. WebDNA will display the
data from the records found by the search. Notice within the
<DNA_foundItems> context is the tag <DNA_Category>. The results of the
summarized search will therefore be a list of the product categories in the
database.

However, the <DNA_Category> fieldname tag has been wrapped in an <A
HREF> hypertext link enabling the visitor to conduct a further search through
the on-line store.

The first part of the search −

 Programmer Guide • 37

<A HREF=”Results.tpl?cart=<DNA_cart>

&category=<DNA_url><DNA_Category></ DNA_url>&startat=1

starts the hypertext link, defines the template to be returned. The remaining
parameters are new; each is discussed below.

cart=<DNA_cart>&Category=<DNA_url>< DNA_Category></DNA_url>&startat=1

The first search parameter, cart=<DNA_cart>, tells WebDNA to create a
shopping cart token with a unique value to be passed from page to page as
the visitor moves through the site. WebDNA’s “SmartCart” feature
automatically creates a shopping cart token if it detects that one has not
been created on any page you display that includes the <DNA_cart> tag.
Simply linking to a page with <DNA_cart> tags makes WebDNA create a
new token because WebDNA was invoked through the “.tpl” suffix. Important:
WebDNA must have a cart token in order to keep track of visitors as they
move through the site.

With the second parameter, “Category”, the <DNA_Category> fieldname tag
was enclosed within a <DNA_url> context. WebDNA will substitute the value
found in the previous search for the <DNA_Category> fieldname tag but will
format it as a proper URL before including it in the search to be conducted.
This is necessary in case the value of the Category field has a space or other
character not valid in URL’s.

Lastly, the “startat” parameter tells the <DNA_search> context on the
Results.tpl page which group of items, in the category selected, to list first (in
case there are more items in the category than can be listed at one time).

The fieldname tag, <DNA_Category>, following the search parameters is the
actual hypertext link which is then closed off by the tag.

To see how this page works, click on the first hypertext in the list of
categories, Black Teas. Your browser will display the Results.tpl page, as
shown in Figure 7.

Figure 7. Black Teas Category Results Page

STEP 3: ADDING ITEMS TO THE SHOPPING CART

The Results tpl template is designed to display all the products of a particular
category in an easy-to-read table. It also allows the visitor to examine the
details of a product more completely and to select individual items in the list
to include in a virtual shopping cart. Before they “check out” on the final order
page, they will be able to define the quantities of each item they want to buy
or remove items they don’t want to buy from the cart.

01| <!--HAS_WEBDNA_TAGS-->
02| <HTML>
03| <HEAD>
04| <TITLE>Results of Your Search for <DNA_category></TITLE>
05| </HEAD>
06| <DNA_Include file=”TeaRoom_Header.inc”>

As usual, the first six lines are set up in the first part of our HTML document.
However, a little twist has been added. In line 04|, the variable name
category has been enclosed in WebDNA brackets. When the browser

 38 • WebDNA

 Programmer Guide • 39

constructs the title for this page, it will substitute the value of ‘category’ that
was determined when the visitor clicked on one of the categories listed on
the Search.tpl page. Thus, if the visitor clicked on the category “Black Teas”
in the list, the title of the returned Results.tpl page will be “Results of Your
Search for Black Teas”.
07| <DNA_search db=”TeaRoom.db”
eqCategorydata=”<DNA_url><DNA_Category></DNA_url>” asTitlesort=”1”
asSKUsort=”2” max=”5” startat=”<DNA_url><DNA_startat></DNA_url>”>
08| <H3>Your search for ‘<DNA_Category>’ found <DNA_numFound>
items</H3>
09| <P>
10| Only the first 100 characters of product descriptions are displayed.

11| To see a complete product description and a picture (if available) click on
the <U>Detail</U> hypertext link.<P>
Lines 07| to 11| set up a search using an embedded <DNA_search> context

using the category determined on the Search.tpl page. Review the
parameters used in the <DNA_search> context.

eqCategorydatarq tells WebDNA to search the database for data in the
Category field equal to the search criteria following the “=” sign. By
default, if you don’t specify that certain fields are required to match, they
are “or-ed” together, which in this example would mean, “Find all records
whose Category is Black Teas or Green Teas or Tea Pots, etc.”. To
require the Category field to match during the search, the letters “rq”
were placed after the data specifier. For a more complete explanation of
“And” vs. “Or” in searching, refer to the reference later in this manual
under Searching - “And” vs. “Or”.

The remainder of line 07| defines how the results of this new search will
be sorted.
asTitlesort=”1” asSKUsort=”2” max=”5”
startat=”<DNA_url><DNA_startat></DNA_url>”

The final parameters instruct WebDNA to sort the results of the search you
are about to conduct first by product Title (Titlesort=1) and then by SKU
(SKUsort=2). In both sorts the sort direction is in ascending order
(Titlesdir=as) and (SKUsdir=as). Finally, max=5, sets the number of records
to be displayed at one time. If more than 5 products are found in a particular
category, the startat parameter determines which block of 5 records to
display (see <DNA_shownext> in the following example for more
information).

12| <TABLE BORDER=1 CELLPADDING=1>

 40 • WebDNA

13| <TR>
14| <TH>Product #</TH><TH>Title</TH><TH>Price</TH>
<TH COLSPAN =2 ALIGN=”CENTER”>Actions</TH>
15| </TR>
16| <DNA_foundItems>
17| <TR>
18| <TD WIDTH=65 ALIGN=”CENTER”><DNA_SKU></TD>
19| <TD WIDTH=300><DNA_title></TD>
20| <TD WIDTH=45 ALIGN=”RIGHT”> $<DNA_format.2f><DNA_

price></ DNA_format></TD>
21| <TD WIDTH=70 ALIGN=”CENTER”><A HREF=”ShoppingCart.tpl

?command=add&cart=<DNA_ cart>&db=TeaRoom.db&sku=<DNA_
url> <DNA_ sku></DNA_url>”>Add to Cart</TD>

22| <TD WIDTH=50 ALIGN=”CENTER”><A
HREF=”Detail.tpl?cart=<DNA_ cart>&sku=<DNA_ url> <DNA_ sku>
</DNA_ url>“>Detail</TD>

23| </TR>
24| </DNA_ foundItems>
25| </TABLE>
26| <DNA_ shownext>
27| <A HREF=”Results.tpl?cart=<DNA_ cart>&category=<DNA_

url><DNA_ category></DNA_url>&startat=<DNA_ start>”>
Show Items <DNA_ start>-<DNA_ end>

28| </DNA_ shownext>
29|

30| </DNA_ search>
31| <A HREF=”ShoppingCart.tpl

?command=showcart&db=TeaRoom.db&cart=<DNA_ cart>”> Show
Shopping Cart

32| <A HREF=”Search.tpl?cart=<DNA_ cart>”>Back To
Search

33| </BODY>
34| </HTML>

Lines 12| to 30| define how the records found by the search will be displayed
in the table. The HTML in lines 12| through 15| are straightforward HTML
tags setting up the table headings.

Lines 16| and 24| open and close a <DNA_ FoundItems> context within
which are displayed all of the WebDNA tags with their associated data as
returned from the search, and which you want to display. Some pieces of
this data are simply displayed for the visitor’s information. However, other
returned data is wrapped within <A HREF> tags that enable you to act
upon it.

 Programmer Guide • 41

Lines 18| and 19| WebDNA simply substitutes the value of the SKU and Title
for each record found. Line 20| does the same, but is enclosed in the
<DNA_ Price> fieldname tag within a <DNA_ Format> context. The
<DNA_ format .2f> tag tells WebDNA to display the data in Price field as
a decimal number (The “f” means floating point.) with 2 places following
the “.” (decimal point).

Lines 21| and 22| are the workhorses on this page. Analyze their parts
further.
21| <TD WIDTH=70 ALIGN=”CENTER”><A HREF=”ShoppingCart.tpl

?command=add&cart=<DNA_ cart>&db=TeaRoom.db&sku=<DNA_
url> <DNA_ sku></DNA_ url>”>Add to Cart</TD>

The first part of line 21| sets the column width for this cell and
horizontally aligns its data in the center. The second part begins the
hypertext link, instructs WebDNA to return the page ShoppingCart.tpl
and sends the add command which tells WebDNA to create a shopping
cart or order file and add whatever is defined by the parameters after the
“?” to the shopping cart file designated by the cart=<DNA_ Cart> tag.
(Shopping cart files become order files when the visitor finalizes their
purchase with the purchase command.)

You should note that you could also use the <DNA_ addlineitem>
context on the resulting shopping cart page in order to add the product to
the cart. In general, you should use contexts instead of commands to
perform WebDNA functions since they offer many advantages. However,
the add command is used here so you can learn how to use it. The third
part of the link designates which database is to supply the item being
added, db=TeaRoom.db, and which item in the database is the one the
shopper has chosen, sku=<DNA_URL><DNA_SKU></DNA_URL>. Just
in case the data in the field SKU has any “illegal” characters (spaces, for
instance) the <DNA_SKU> fieldname tag is wrapped in a <DNA_URL>
context.

In the next section you’ll see what the ShoppingCart.tpl template does
with the item you asked WebDNA to add to this visitor’s shopping cart.
22| <TD WIDTH=50 ALIGN=”CENTER”><A HREF=”Detail.tpl

?cart=<DNA_cart>>&sku=<DNA_url><DNA_
sku><</DNA_url>”>Detail</TD>

Line 22| By this time, you should be able to read line 22| and describe what it
does, but just in case you need a little help, it is analyzed further below.

The first part of line 22| once again sets the column width for this cell and

 42 • WebDNA

horizontally aligns its data in the center. The second part begins the
hypertext link, instructs WebDNA to return the page Detail.tpl and sends
the value of the cart and SKU to look up in the TeaRoom database. An
embedded search in the Detail.tpl page will find the information for the
SKU value given. Of course, to be safe the <DNA_SKU> tag is wrapped
in a <DNA_ URL> context. When you examine the Detail.tpl template
you’ll see how the information is displayed.

Lines 24| and 25| close out the <DNA_ FoundItems> context and the
<TABLE> tag.

Remember the parameter max=5 is included in the search context. Line 26|
is a <DNA_ShowNext> context which encloses an <A HREF> hypertext link
and that does the following things.

26| <DNA_ shownext>
27| <A HREF=”Results.tpl?cart=<DNA_ cart>&category=<DNA_ url>

<DNA_ category></DNA_ url>&startat=<DNA_ start>”>
Show Items <DNA_ start>-<DNA_ end>

28| </DNA_ shownext>

Part one, <DNA_ ShowNext><A HREF=”Results.tpl?cart=<DNA_ cart>&,
opens the <DNA_ ShowNext> context, and starts the hypertext link that will
allow people to view the items found from the search but not part of the first 5
items.

Part two, category=<DNA_ url><DNA_ category></DNA_
url>&startat=<DNA_ start>, defines the search parameter chosen on the
Search.tpl page. The value of the startat parameter, <DNA_ Start>, is a value
automatically determined by the <DNA_ shownext> context. For example, if
there are 23 items found in a category, and you are displaying 5 records at a
time, the <DNA_ ShowNext> context will loop 4 times so you can build up
links for all the additional groups of 5 products: 6-10, 11-15, 16-20, 21-23.
For each loop through the WebDNA contained in the <DNA_ shownext>
context, there are two values available - <DNA_ Start> and <DNA_ End>. In
the example, the start values are 6, 11, 16, 21, and the end values are 10,
15, 20, and 23.

Lines 31| and 32| are site navigation links. Line 31| creates a link telling
WebDNA to return the template ShoppingCart.tpl, and show all the items
currently in the cart.

Line 32| is an exact duplicate of the hypertext link on the Entry.tpl page
and will return the visitor to the Search.tpl page to search for products in
the store by category.

 Programmer Guide • 43

As the customer, you have decided you would like to purchase the Cinnamon
Plum black tea. Click on the Add to Cart hypertext link in the table row for
Cinnamon Plum. Your browser will display the ShoppingCart.tpl page. It will
list one product, Cinnamon Plum tea, with an input field for you to set the
quantity of tea canisters you would like to buy. Review the following section
to see how this page works.

STEP 4: USING THE SHOPPING CART PAGE

There are two circumstances when a visitor to this site will view the shopping
cart page, ShoppingCart.tpl. The first is whenever they click on any Add to
Cart link on the Results.tpl page, and the second is when they click on any
link that takes them directly to the page using the showcart command in
order to view the current contents of their cart.

Analyze the ShoppingCart.tpl template and see how it begins the process of
turning the WebDNA site, which up to now has been mostly finding and
displaying records in a database, into a Web commerce site that lets your
visitors make personal purchasing decisions and finalize them over the web.
That includes choosing products and quantities, choosing preferred shipping
and payment methods, having all their individual charges calculated and their
final purchase decision acknowledged with a “Thank You!” on the web and
by personal email.

By this time, you should have little difficulty describing what lines 01| through
10| are doing. Even the hypertext link in line 08| should be familiar to you. It
is used on every page except the Search.tpl page that is the one it links to
lines 09| and 10| are merely instructions to the visitor on how to proceed and
include no WebDNA tags.

01| <!--HAS_WEBDNA_TAGS-->
02| <HTML>
03| <HEAD>
04| <TITLE>Your Shopping Cart</TITLE>
06| <DNA_Include TeaRoom_Header.txt>
07| <H1>Shopping Cart</H1>
08| You have just added an item to your shopping cart. From here, you

may press your browser’s “Go Back” button to see the page you just
came from, or you can <A HREF=”Search.tpl?cart=<DNA_cart>”>

go to the Category Search page.<P>
09| If you are done shopping, please fill in the quantity for each product

you would like to buy, choose a shipping method and ship to
destination, and then click “Proceed to Final Checkout”.

10| <H3>Your Shopping Cart Contains the Following Items</H3>

 44 • WebDNA

On every page until now, parameters have been passed to WebDNA from
within <A HREF> hypertext links. On this page, an HTML form will be used to
accomplish the same thing.

A form is required because you are asking the visitor to provide input on
several things including the quantity of each product they want to buy, the
shipping method they want us to use, and the State to which they want us to
send their purchase. All of this input will be used by the invoice page to
calculate extended prices, tax rates and totals, shipping costs, and the grand
total for all the appropriate charges.

11| <FORM METHOD=”POST” ACTION=”Invoice.tpl”>
12| <INPUT TYPE=”HIDDEN” NAME=”cart” value=”<DNA_cart>”>

Lines 11| and 12| define the method the form should use and the action to
be carried out using the form information. In line 11| WebDNA is
instructed to return the page Invoice.tpl. Line 12| begins the list of
parameters passed to the invoice page. These are the parameters you
have seen listed after the ‘?’ in all the hypertext links used up to now.
We’re using hidden input fields for which values have been predefined
because no visitor input is required in this case. Line 12| defines the
value of the cart.
13| <TABLE BORDER=”1” CELLPADDING=1>
14| <TR ALIGN=”CENTER”>
15| <TH WIDTH=”38”>Line #</TH>
16| <TH WIDTH=”65”>Product #</TH>
17| <TH WIDTH=”250”>Item Title</TH>
18| <TH WIDTH=”30”>Qty</TH>
19| <TH WIDTH=”45”>Price</TH>
20| <TH WIDTH=”70”>Put It Back!</TH>
21| </TR>

Lines 13| through 21| set up the table and table headings you will use to
display the items the shopper has chosen on the ShoppingCart.tpl page.

22| <DNA_lineItems>
23| <TR>
24| <TD ALIGN=”CENTER” WIDTH=”38”> <DNA_lineIndex></TD>
25| <TD ALIGN=”CENTER” WIDTH=”65”> <DNA_ SKU></TD>
26| <TD WIDTH=”250”> <DNA_ title></TD>
27| <TD WIDTH=”30”> <INPUT TYPE=”TEXT” NAME=”quantity<DNA_

lineIndex>”SIZE=”3” VALUE=”<DNA_ quantity>”></TD>
28| <TD ALIGN=”RIGHT” WIDTH=”65”> <DNA_ format 6.2f> <DNA_

price> </DNA_ format></TD>

 Programmer Guide • 45

29| <TD ALIGN=”CENTER” WIDTH=”75”><A
HREF=”ShoppingCart.tpl?command=remove&db=TeaRoom.db&ind
ex=<DNA_lineIndex>&cart=<DNA_ cart>”>Remove Item</TD>

30| </TR>
31| </DNA_ lineItems>
32| </TABLE><P>

The next few lines might have a ring a familiarity to them. A little examination
suggests they are very much like the HTML and WebDNA used earlier to
display the results of your product search. However, rather than use a
<DNA_FoundItems> context a <DNA_ LineItems> context is used. A <DNA_
LineItems> context lists the contents of the shopping cart file that the visitor
created when they clicked on the Add to Cart link in the product list displayed
by Results.tpl. For a more comprehensive discussion of just what makes up
the shopping cart file, refer to the reference section and the file formats
section of this manual.

Lines 22| and 31| open and close the context. Line 24| introduces the
<DNA_LineIndex> a tag, a tag available only inside the <DNA_
LineItems> context. As each item is added to the shopping cart file a new
line is created and given a number. Numbering begins with one and is
incremented by one each time a new item is added. In line 24| the
<DNA_LineIndex> tag is used to number each row containing a
shopping cart item. Lines 25| and 26| contain the SKU and product title
for each item in the shopping cart.

Line 27| incorporates an HTML text input field, the first opportunity the
shopper has to input information for which you will need to calculate
extended prices and totals. Notice the use of the <DNA_lineindex> tag to
name the field. The quantity for each item submitted at the final purchase
will have a unique name when the form is submitted, i.e. “quantity1”,
“quantity2”, “quantity3”, etc. Its value will be the number entered by the
shopper.
27| <TD WIDTH=”30”>
<INPUT TYPE=”TEXT” NAME=”quantity<DNA_ lineIndex>”
SIZE=”3” VALUE=”<DNA_ quantity>”></TD>

Lines 28| and 29| should look familiar. With one exception, they’re identical
to the Price and Add to Cart lines used on the last page . . . with one
exception. Rather than use the add command in the hypertext link, the
remove command was used. It does just what you would expect it to do;
it removes the item referenced by the SKU from the shopping cart file,
re-indexes the lines in the shopping cart, and returns the
ShoppingCart.tpl template with the altered file information.

 46 • WebDNA

33| <CENTER>Shipping Method: <SELECT NAME=”__shipVia”>
34| <OPTION VALUE=”UPS” <DNA_showif<DNA_

shipVia>=UPS>selected </DNA_ showif>>UPS Ground
35| <OPTION VALUE=”FedEx 2 Day” <DNA_ showif<DNA_

shipVia>=FedEx 2 Day>selected </DNA_ showif>>FedEx Two-Day
36| <OPTION VALUE=”FedEx 1 Day” <DNA_ showif<DNA_

shipVia>=FedEx 1 Day>selected </DNA_ showif>>FedEx Overnight
37| </SELECT><P>
38| Ship to: <INPUT TYPE=”radio” NAME=”__shipToState” VALUE=”CA”

checked> California <INPUT TYPE=”radio” NAME=”__shipToState”
VALUE=”VT”> Vermont <INPUT TYPE=”radio”
NAME=”__shipToState” VALUE=”Other”> Other (Required for
further processing)<P>

39| <INPUT TYPE=”SUBMIT” VALUE=”Proceed to Final
Checkout”></CENTER>

40| </FORM>
41| </BODY>
42| </HTML>

Lines 33| to 37| provide another opportunity for the shopper to provide input
needed to make the final shipping cost and grand total calculations.
These lines define an HTML pop-up menu form element. However,
another little WebDNA twist has been added to it. By wrapping each
selected option in a <DNA_ShowIf> context so that the proper pop-up
item will be selected if you come back to this page after making a
selection. This technique is very useful in many situations. The reason
the names of the input fields are preceded by two underscore characters
will be made clear on the invoice page.

Line 38| adds another form element to the page. It’s an HTML radio button
form element asking the user to tell you whether their order is to be
shipped to California (CA), Vermont (VT), or Other. Katy’s parents ship
some of the items from California so they have to collect sales tax for
those shipments, and Katy has to collect sales tax for shipments to
Vermont, but sales tax will not be collected for shipments to other states.
You will use the shopper’s choice to determine whether sales tax will be
added to the final invoice and what sales tax rate in the TaxRates.db
database will be used to calculate the tax. More about how this happens
when you examine the Invoice.tpl template.

Line 39| adds the final form element to the page, a submit button that sends
all the form information to WebDNA for processing and returns a
completed “trial” invoice on which all the necessary extended price,
shipping cost, tax totals, and grand totals have been made.

By now, the power and flexibility that WebDNA brings to developing a web
commerce site should be pretty clear.

While you were looking at the brief descriptions of teas listed on the
Results.tpl page you may have been intrigued by the GLENBURN
DARJEELING tea. However, the description was probably too brief for you to
decide whether you wanted to add it to you shopping cart. Click on the Back
button of your browser to return to the list of black teas. The right most
column of each row in the list has a Detail hypertext link. Click on the Detail
hypertext link for GLENBURN DARJEELING. Your browser will display the
Detail.tpl page (i.e., Rose Arbour’s product detail page), as shown in Figure
8.

Figure 8. Detail Page for GLENBURN DARJEELING Tea

STEP 5: USING THE PRODUCT DETAIL PAGE

All the searches we have allowed our shoppers to make have returned lists
of products with their SKUs, their Titles, and perhaps some text describing
the product. Unless they already know something about the products in the
list, it is likely that they will want to see more information before they buy.

 Programmer Guide • 47

 48 • WebDNA

The Product Detail page can give them the additional information they want,
including a picture if it is available. Here is the HTML/WebDNA for the
Product Detail page. This page is returned when the shopper clicks on the
Detail hypertext link on the Results.tpl template.

Most of the lines on this template do almost exactly the same thing that the
lines on the Results.tpl template do. There are some fieldname tags like
<DNA_SKU> and <DNA_ Title>, and there is a <DNA_ Search> context that
finds the record with the given sku. Inside the search, the <DNA_
FoundItems> context encloses a table displaying information about the
product, in this case, other descriptive data from the TeaRoom.db database.

01| <!--HAS_WEBDNA_TAGS-->
02| <HTML>
03| <HEAD>
04| <TITLE>Product Detail for <DNA_SKU></TITLE>
05| </HEAD>
06| <DNA_ include file=TeaRoom_Header.inc>
07| <P>
08| <CENTER>
09| <DNA_ search db=TeaRoom.db&eqskudata=<DNA_url><sku></DNA_

url>>
10| <DNA_ founditems>
11| <H3>Product detail for <DNA_ sku> - <DNA_ title></H3>
12| <TABLE BORDER=0 CELLPADDING=4 CELLSPACING=4WIDTH=500>
13| <TR>
14| <TD ALIGN=CENTER>PRODUCT # <DNA_ sku></TD>
15| <TD ALIGN=CENTER VALIGN=MIDDLE><DNA_

title></TD>
16| </TR>
17| <TR>
18| <TR>
19| <TD ALIGN=CENTER VALIGN=TOP ROWSPAN=8><DNA_ showif<DNA_

hasPhoto>=T><IMG ALIGN=”CENTER” SRC=”<DNA_ showif
Windows=<DNA_ platform>>/WebCatalog/Art/</DNA_
showif>TeaRoomImages/<DNA_ PhotoName>” ></DNA_ showif> <DNA_
showif<DNA_ hasPhoto>!T>No Photo Available</DNA_ showif></TD>

20| <TD ALIGN=CENTER VALIGN=TOP COLSPAN=2><FONT
SIZE=4><DNA_description2></TD>

21| </TR>

Most shoppers want to see the products they are buying. In line 19| we give
them that opportunity. There are two fields in our database that enable us to
do this. The first field is named “hasPhoto” and can have a value of “T” or “F”.
The second field is named “PhotoName” and its value is the name of an
image file in a folder or directory called “TeaRoomImages”.

 Programmer Guide • 49

Line 19| begins by defining some of the details about the table cell which are
designed to enable the display of different sized pictures without
misaligning the descriptive text that is also part of the table.

The <DNA_ShowIf> context defines the following condition. If the database
field hasPhoto has a value of T, then display the image in the folder
TeaRoomImages whose source file is named PhotoName, where the actual
name of the photo as entered in the database is substituted for the fieldname
tag <DNA_PhotoName>. It is important to note that the actual photo is not
stored in the database, only its name is stored.

Conversely, if the value of the hasPhoto field for this record is “F,” then the
text “Photo Not Available” is displayed. By using the <DNA_ShowIf> context
our shopper has the ability to examine the product before buying it, even
before putting it in the shopping cart.

21| <TR>
22| <TD ALIGN=CENTER VALIGN=TOP><FONT

SIZE=3><DNA_Description3></TD>
23| </TR>
24| <TR>
25| <TD ALIGN=LEFT ROWSPAN=1><DNA_ Description1></TD>
26| </TR>
27| <TR>
28| <TD ALIGN=LEFT><DNA_hideif<DNA_ url> <DNA_ Ingredients>

</DNA_ url>=>IN GREDIENTS: <DNA_ Ingredients> </DNA_
hideif></TD>

29| </TR>
30| <TR>
31| <TD ALIGN=LEFT>Price: $<DNA_ format .2f> <DNA_ price> </DNA_

format></TD>
32| </TR>
33| <TR>
34| <TD ALIGN=LEFT><a

href=”ShoppingCart.tpl?command=add&db=TeaRoom.db&cart=<DNA_cart
>&sku=<DNA_url><DNA_sku></DNA_ url>”>Add to Cart</TD>

35| </TR>
36| <TR>
37| <TD ALIGN=CENTER></TD>
38| </TR>
39| </TABLE>
40| </DNA_founditems>
41| </DNA_ search>
42| Press your browser’s "Go Back" button to see the page you just

came from,
or return to the <A
HREF=”Search.tpl?cart=<DNA_cart>”>Search by Category Page

43| </CENTER>
44| </BODY>
45| </HTML>

The remaining lines in this template should look similar to the Results.tpl
page as well.

Now that you have shopped in the store, examined the products of interest
and dropped them into your shopping cart, it’s time for you to make your final
purchase decision and for WebDNA to total up the charges and take your
order.

In the simulation, you have decided to buy only the Cinnamon Plum tea. You
need to tell WebDNA where the product is to be shipped so it can make the
calculations required to total up the charges for your order. Accept the UPS
Ground default shipping method, click on the California radio button at the
bottom of the ShoppingCart.tpl page and then click on the Proceed to Final
Checkout button to access the Invoice.tpl page, as shown in Figure 9. If you
made the selections suggested in this tutorial, your page will look like the
following one:

Figure 9. Final Checkout Page

 50 • WebDNA

 Programmer Guide • 51

STEP 6: USING THE PURCHASE/INVOICE PAGE

Tom and Katy’s reason for developing the TeaRoom commerce site was to
offer their products for sale over the World Wide Web. You’ve finally reached
the point in the tutorial where you can see that happen.

After all, shopping is not buying!
01| <!--HAS_WEBDNA_TAGS-->
02| <HTML>
03| <HEAD>
04| <TITLE>Invoice</TITLE>
05| </HEAD>
06| <DNA_include file=TeaRoom_Header.inc>
07| <DNA_orderfile cart=<DNA_ cart>>
08| <DNA_SetHeader
cart=<DNA_ cart>>shipVia=<DNA_ url><DNA___shipVia>

</DNA_url>&shipToState=<DNA_url><DNA___shipToState>
</DNA_url>&CartIPAddress=<DNA_ipAddress><DNA_SetHeader>

09| <DNA_lineitems>
10| <DNA_SetLineItem

cart=<DNA_cart>&index=<DNA_lineindex>>>quantity=<DNA_interpret>
<DNA_quantity><DNA_lineindex>></DNA_interpret>&textA=<DNA_url>
<DNA_lookup db=TeaRoom.db&lookinfield=sku&value=<DNA_url>
<DNA_sku> </DNA_url>&returnfield=title

> </DNA_url> </DNA_SetLineItem>
11| </DNA_lineitems>
12| <H1>Final Invoice</H1>
13| [<A

HREF=”ShoppingCart.tpl?command=showcart&db=TeaRoom.db&cart=<DN
A_cart>”>Change Quantities, Shipping, or Ship-To State |

14| <A HREF=”Search.tpl?cart=<DNA_cart>”>Shop Some More]

15| <H3>Your Final Invoice Contains the Following Items<P>
16| Your Order Number is #<DNA_cart></H3>

Line 07| uses the <DNA_OrderFile> context that allows access to all the
information stored in the shopping cart file referenced by the value of the
cart variable. In particular, the <DNA_orderfile> context lets you view all
the shipping and line item information relating to a specific order. Since
the user may have changed the quantities of items purchased, and
entered some shipping information, on the shoppingcart.tpl page that
linked to this page, we must first update the information in the current
shopping cart.

Line 08| sets the shipping method selected in the pop-up menu on the
shoppingcart page. This information is stored in the header area of the

 52 • WebDNA

shopping cart and is set using the <DNA_SetHeader> context. Since you
are inside of the <DNA_OrderFile> context, you can see the current value
set in the shipvia field, for example, by simply placing square brackets
around the name: <DNA_ShipVia>.

Remember that you chose to place two underscores in front of the field
names on the results page. The reason you chose to do this was twofold.
First, and most important, we didn’t want the value of the incoming form
variable to conflict with the value currently in the shopping cart. That is, if
the form variable was named shipvia, then simply placing
<DNA_ShipVia> in your template would create an ambiguous situation -
which shipvia do you want, the one in the shopping cart, or the one in the
form? Secondly, however, we wanted the name to be similar to the name
of the field in the shopping cart so we can read the template easily. The
two underscores preceding the name mean that the name doesn’t
conflict with the shopping cart value, and yet make it obvious what the
field contains.

Lines 09| to 11| update the quantities of the individual line items in the
shopping cart. Since they might have changed all the quantities, you
must loop through all the line items with the <DNA_LineItems> context
and reset the value of the quantity variable. Quantity is a value that is
stored in each individual line item and is only available within the
<DNA_lineitems> context. Notice that the quantity form is named
variables on the results page so they could be sequentially in the
<DNA_LineItems> context using the <DNA_LineIndex> as a counter. In
addition to quantity, the title of the product is placed in the TextA field
using the <DNA_LookUp> tag. <DNA_LookUp> is a very specialized, and
very fast, form of database search. Since the product title is not normally
saved in the shopping cart, we place the title in one of the 5 spare fields -
TextA - TextE.

Line 13| lets you return to the Results.tpl page so you can update the
quantity or shipping information selected.

Line 16| uses the <DNA_Cart> tag to assign the cart token number to this
order form. Katy and Tom will be able to use Administration templates to
call up any of the orders in the Orders folder. Note that the order number
is not intended to be used as an invoice number although it could be
used that way. However, invoice numbers are usually numbered
sequentially. WebDNA <DNA_Cart> tokens are not created in sequential
order.
17| <FORM METHOD=”POST” ACTION=”ThankYou.tpl”>
18| <INPUT TYPE=”HIDDEN” NAME=”cart” VALUE=”<DNA_cart>”>

 Programmer Guide • 53

19| <TABLE WIDTH=520 BORDER=”1” CELLPADDING=”1”>
20| <TR>
21| <TH WIDTH=”38”>Item #</TH>
22| <TH WIDTH=”45”>Qty</TH>
23| <TH WIDTH=”65”>Product #</TH>
24| <TH WIDTH=”250”>Product Name</TH>
25| <TH WIDTH=”45”>Price</TH>
26| <TH WIDTH=”55”>Extension</TH>
27| </TR>
28| <DNA_lineItems>
29| <TR>
30| <TD ALIGN=”CENTER” WIDTH=”38”> <DNA_lineIndex></TD>
31| <TD ALIGN=”CENTER” WIDTH=”45”> <DNA_quantity></TD>
32| <TD ALIGN=”CENTER” WIDTH=”65”> <DNA_sku></TD>
33| <TD WIDTH=”250”> <DNA_textA></TD>
34| <TD ALIGN=”RIGHT” WIDTH=”45”>$ <DNA_price></TD>
35| <TD ALIGN=”RIGHT” WIDTH=”65”>$ <DNA_format
.2f> <DNA_math>

<DNA_quantity>*<DNA_price></DNA_math></DNA_format]</TD>
36| </TR>
37| </DNA_lineItems>

Lines 17| and 18| open the <FORM> tag (You need more input from the
buyer.) and define the template to be returned, ThankYou.tpl.

Lines 19| to 28| open the <TABLE> tag, define the column widths and table
headings, and open a <DNA_LineItems> context.

Lines 30| to 36| require some explanation. If you look at the shopping cart
file format in the File Formats section of this manual you’ll see that the
line items part of the file includes only the following fields:
sku,quantity,price,taxable,canEmail,unitshipCost,textA,textB,textC,textD, and

textE. There is no mention of fieldname tags such as <DNA_title>,
<DNA_description1>, <DNA_description2>, etc.. The reason for this is that

WebDNA allows you to name fields in your database any way you like. The
TextA through TextE line items act as “placeholders” for any five field name
tags you may want to include in our order file. On our TeaRoom site each
line item on our final purchase invoice incorporates the <DNA_Title>
fieldname tag to describe what the purchaser is buying.

Lines 30| through 35| fill in the remainder of the columns in the
<DNA_LineItems> context with the values for quantity (derived from the
value entered in the field on the shopping cart page), SKU, product title,
price, and extended price.

 54 • WebDNA

Until now most of what’s been done with WebDNA has been aimed at
searching and displaying information from the database. The lines of HTML
and WebDNA that follow implement some of the basic commerce aspects of
WebDNA. For a complete discussion of WebDNA’s commerce features refer
to the reference section of this manual and the on-line reference.

38| <TR>
39| <TD ALIGN=”RIGHT” COLSPAN=”5”> Subtotal</TD>
40| <TD ALIGN=”RIGHT” WIDTH=”65”>$<DNA_subTotal></TD>
41| </TR>
42| <TR>
43| <TD ALIGN=”RIGHT” COLSPAN=”5”><DNA_ShipTostate> Tax Rate:

<DNA_taxRate>% Tax</TD>
44| <TD ALIGN=”RIGHT” WIDTH=”65”>$<DNA_taxTotal></TD>
45| </TR>
46| <TR>
47| <TD ALIGN=”RIGHT” COLSPAN=”5”><DNA_shipVia> Shipping &

Handling</TD>
48| <TD ALIGN=”RIGHT” WIDTH=”65”>$<DNA_shippingTotal> </TD>
49| </TR>
50| <TR>
51| <TD ALIGN=”RIGHT” COLSPAN=”5”>Grand Total</TD>
52| <TD ALIGN=”RIGHT” WIDTH=”65”>$<DNA_grandTotal></TD>
53| </TR>
54| </TABLE>

Lines 38| to 54| introduce new WebDNA tags dedicated exclusively to
WebDNA’s commerce functions.

Line 40| introduces the <DNA_SubTotal> tag. This tag calculates the sum of
the extended prices of all the line items in the <DNA_LineItems> context.

Quite a few things are going on in lines 43| and 44| even though it appears
to be simply another labeling for the adjacent <DNA_TaxTotal> tag. This line
demonstrates another powerful commerce feature of WebDNA.

The value of <DNA_ShipToState> was determined when the shopper clicked
on one of the radio buttons on the ShoppingCart.tpl page. The possible
values were CA for California, VT for Vermont, and Other. Here the tag is
used to inform the visitor which state’s tax rate is being used to calculate the
<DNA_TaxTotal>. The value of <DNA_TaxTotal> will be calculated by
multiplying the value of <DNA_SubTotal> by the <DNA_TaxRate>. Remember,
however, that there are three possible tax rates. One tax rate must be
charged for shipments made to Vermont, yet another for shipments made to
California, and none at all for shipments made to other destinations. How can
WebDNA determine which value to substitute for the <DNA_TaxRate> tag?

 Programmer Guide • 55

Enter the Formulas.db database, the TaxRates.db database and the
<DNA_LookUp> tag.

When a shopper clicks on one of the Add to Cart hypertext links and issues
an add command to add products to their shopping cart, WebDNA gets the
price of the product in one of two ways: the price can come from a field in the
database called “price”, or it can be calculated based on a formula stored in a
separate database called the “Formulas.db”.

Note: To prevent “hacking”, WebDNA only allows remote users to set product
prices if the Price Change Password defined in the WebDNA Preferences is
used. However, you can still customize pricing by creating a formula that
calculates a different price based on any WebDNA tag, such as
<DNA_UserName>, <DNA_Zip>, <DNA_AccountNumber> or even a calculation
within a <DNA_Math> context. This TeaRoom tutorial uses formulas to
calculate price, taxRate, unitShipCost and overall shipping costs based on
some component of the customer’s shipping address such as state, or zip
code.

Every time a product is added to the shopping cart, WebDNA calculates the
item’s price, unit ship cost, ship cost, and tax rate in the following manner:

WebDNA first looks for a file called Formulas.db in the same folder as the
shopping cart template itself, and looks there for a formula named “price”. If
the Formulas.db database has a price formula, WebDNA evaluates the
WebDNA expression comprising the formula within the context of the current
shopping cart file, so that the value of tags such as <DNA_Zip> and
<DNA_SKU> are available for the calculation. Then it sets the price of the
product based on the calculated formula, or if no formula is found, simply
uses the value of the price field corresponding to the item’s SKU from the
product database. WebDNA repeats the same steps for unitShipCost as well.

For <DNA_TaxRate> and <DNA_ShipCost> WebDNA repeats the same
process. However, <DNA_TaxRate> and <DNA_ShipCost> are applied to the
entire order, not just the one item that was added. If no formulas for
<DNA_TaxRate> or <DNA_ShipCost> are found in the Formulas.db database,
WebDNA looks for form variables called “taxRate” and “shipCost” and uses
them instead.

The TeaRoom uses formulas to calculate the price, tax rate and ship cost
amounts. Review the Formulas.db and TaxRates.db to see how they work
together to calculate the value of <DNA_TaxRate> for each purchase.

 56 • WebDNA

In this case the formula for taxRate takes the form of a <DNA_LookUp> tag
that looks like this as a record in the Formulas.db database:

taxRate<tab><DNA_lookup
db=TaxRates.db&lookInField=State&value=<DNA_ShipTostate>&returnFiel
d=taxRate¬Found=0.00><cr>

A <DNA_LookUp> tag performs an extremely fast search through the
specified database and returns either the value of the returnField in the found
record, or the literal text of the notFound value. The search is an exact
match, case-sensitive, so “CA” does not equal “ca”. The syntax for a
<DNA_LookUp> tag has five parts.

• taxRate<DNA_lookup db=TaxRates.db

• &lookInField=State

• &value=<DNA_ShipTostate>

• &returnField=taxRate

• ¬Found=0.00>

Examining the TaxRates.db database. will help you to understand how this
works. It contains the following field names and data:

State taxRate
CA 8.25
VT 5.0
Other 0.00

Suppose that the shopper clicked on the California radio button on the
ShoppingCart.tpl template. That set the value of <DNA_ShipToState>> to CA.
The taxRate formula looks in the TaxRates.db database (part 1) in the State
field (part 2) for a value equal to <DNA_ShipToState> (“CA”, part 3) and
returns its associated taxRate (“8.25”, part 4), as shown in Figure 10. If it
finds no record matching <DNA_ShipToState>. i.e. “CA”, “VT”, or “Other”, it
returns the literal string assigned to notFound, in this case “0.00”.

Therefore, using the example above, the value of <DNA_taxRate> in line 43|
will be 8.25. WebDNA will multiply <DNA_subTotal> by 8.25% (.0825) to
calculate the value of <DNA_taxTotal> in line 44|.

The same process is used to calculate the value of <DNA_ShippingTotal> in
line 48|.

Lines 51| to 52| create the Grand Total label and use the <DNA_GrandTotal>
tag to calculate the sum of <DNA_SubTotal>, <DNA_TaxTotal>, and
<DNA_ShippingTotal>.

 Programmer Guide • 57

55| Please enter the following information so that we may process your
order.<P>

56| <P>
57| <CENTER>
58| <DNA_include file=InvoiceInfo.inc>
59| <P>
60| <INPUT TYPE=”SUBMIT” VALUE=”Purchase”></FORM>
61| </CENTER>
62| </DNA_orderfile>
63| </BODY>
64| </HTML>

Line 58| uses an <DNA_Include> tag to incorporate the HTML form elements
needed to get input for Bill To: and Ship To: information from the shopper
so we can complete the transaction. Open the file InvoiceInfo.txt if you
want to examine the HTML and WebDNA it used to capture this
information. The only part of this file that requires your special attention
is the inclusion of the <DNA_ShipTostate> tag in the Ship To: part of the
form. We want to pass this value on to the ThankYou.tpl template
because WebDNA will use it to calculate the taxRate and shipCost
values for that template as well as this one.

Line 60| defines the submit button for the form elements defined in all the
previous lines.

Figure 10. Final Invoice Page (order portion)

 58 • WebDNA

Figure 11. Final Invoice Page (billing, shipping, payment)

Finalize your order for Cinnamon Plum tea by clicking on the Purchase
button, as shown at the bottom of Figure 11. Your browser will display the
ThankYou.tpl page:

STEP 7: ACKNOWLEDGING THE ORDER

If you ordered a product in a store for later delivery, you would expect a
receipt for your money or some evidence that you had paid for the products
you ordered. The tutorial doesn't do anything quite so advanced, but it does
acknowledge the purchase the customer made.

This page is almost exactly the same page as the Invoice.tpl page. It simply
replaces the input fields with WebDNA variable and fieldname tags to display
the information input by the customer. Examine the lines of HTML/WebDNA

 Programmer Guide • 59

below and the contents of the ThankYouInfo.txt file that is used to send an
email to the customer to see how this page works.

WebDNA Lab
This application provides a simple way to create, edit and view WebDNA
templates (or HTML in general).

By default, the application is divided into four views:
Source window (upper right)
Database window (lower right)
Preview window (upper left)
Chat window (lower left)

The Preview and Chat windows can be 'floated' into separate browser
windows.

The Source window is considered the main view, and contains the
application menu bar. This view also contains the textarea used to edit file
content.

 60 • WebDNA

 Programmer Guide • 61

The Database view is used to edit database files.

The Preview window is used to view 'rendered' WebDNA/HTML files.

The Chat window contains a java based chat control that enables a lab user
to join in live chat sessions with other WebDNA lab users.

The menu bar contains the following...

• Edit Menu - Contains all the options needed to load, create, edit, and
delete WebDNA/HTML files. It will also display a history of the last eight
files opened in the Source window.

• Preview Menu - Allows you to load and refresh the contents of the
'Preview' window. The Preview window is also automatically refreshed
when a file or database is saved.

• Database Menu - Similar to the Edit menu, the Database menu contains
the options needed to create, load, delete, and edit databases.

• Prefs Menu - Contains misc. configuration options. Also contains a link
to the Sandbox Admin templates (if this lab is designated as an ISP
Sandbox).

• Help Menu - Contains a link to the online WebDNA guide. Also contains
links to several WebDNA tutorials.

Where to Go from Here?
Additional commerce functionality is built into WebDNA. This includes the
ability to send emails containing order file information to customers,
acknowledging their orders, and notifying the person responsible for fulfilling
received orders. Use WebDNA tags and contexts to define the text for those
email messages. Additional email oriented tags are used to define the
sender, recipient, and subject fields required for Internet email.

Refer to the WebDNA 5.0 At-A-Glance Reference in Chapter 3 and the
Advanced Uses of WebDNA in Chapter 4 sections for details on how to set
up the Email Program and its required preferences.

 62 • WebDNA

Chapter 3 − WebDNA
Reference

WebDNA 5.0 At-A-Glance Reference

• Searching

• Databases

• Shopping

• Showing and Hiding

• Dates and Times

• Text Manipulation

• Passwords

• Files and Folders

• Technical

• Browser Info

• Miscellaneous

• File Formats

WebDNA is very powerful and requires much less code than most other
web programming languages. Refer to this section as needed for all avail-
able tag, context and command details at the time of this manual’s printing.
Refer to the WebDNA Software Corporation web site (www. webdna.us)
for any updates, additions and current examples of use.

The WebDNA 5.0 At-A-Glance Reference provides a list of all tags,
contexts and commands used by WebDNA as of the printing of this docu-
ment. They are grouped under the following categories making it easier to
determine which one to select for what function:

Pay special attention to those items marked as deprecated. Though still
supported in this version, these will not be supported in the next version of
WebDNA.

 Programmer Guide • 63

Searching

[FOUNDITEMS] CONTEXT
Syntax: [founditems]Database Fields[/founditems]

Result: Loops through the number of items specified in the list of found
records.

Required Enclosing Context:
[search]...[founditems]...[/founditems]...[/search]

Optional Context Tags:

• [fieldname] − Name of any field in the database being searched. The
value of the field specified for a record that matched the search
criteria is returned.

• [index] − A number from 1 to the number of matching records
indicating this record’s index in the list.

To display a list of all matching records from a search command or a [search]
context, insert a [FoundItems] context into a WebDNA template. If the search
specified a maximum number of matches, the maximum matches found are
displayed in the [FoundItems] loop. Also see [ShowNext].

For example:
[FoundItems]
Name: [name]

Address: [address]

Phone: [phone]

<hr>
[/FoundItems]

[LOOKUP] TAG
Syntax: [LookUp

db=databasePath&value=searchValue&lookInField=searchField&retur
nField=fieldName¬Found=TextIfNotFound]

Placing [LookUp] in your template performs an extremely fast search through
the specified database and returns either the value of the returnField in the
found record, or the literal text of the notFound value. The search is an case-

 64 • WebDNA

sensitive, exact match, so “Grant” does not equal “grant.” If you want more
control over the search criteria, use a [Search] context instead.

[SEARCH] CONTEXT
Syntax: [search criteria&max=n]Found Items[/search]

Result: Searches a database for matching records and displays the found
matches.

Optional Tag Parameter:
• search criteria − See Search command.

• max=number − The max parameter determines the maximum
number of records that will be displayed in the [FoundItems] loop for
the search. Additional found records will have links built for them by
the [ShowNext] context.

• startat=number − The starting index number in the found items to
display in the [FoundItems] context. The default value for this
parameter is 1. The [ShowNext] context automatically adds this value
so you rarely need to set it yourself.

Optional Context Tags:

• [numfound] − A number indicating how many records matched the
search request.

• [founditems][/founditems] − Displays the records matching the
search and following the values set for startat and max.

• [shownext][/shownext] − Displays links for the items found but not
listed in the [founditems] context.

• [Sum field=fieldName] Calculates the numerical sum of all the found
records, using the fieldName column.

• [Avg field=fieldName] Calculates the numerical average of all the
found records, using the fieldName column.

• [Min field=fieldName] Calculates the numerical minimum of all the
found records, using the fieldName column.

• [Max field=fieldName] Calculates the numerical maximum of all the
found records, using the fieldName column.

 Programmer Guide • 65

For example:
[search db=names.db&eqNAMEdata=Grant]
Found [numfound] items

[founditems]

[Name], [Address], [City]

[/founditems]
[/search]

Whenever WebDNA encounters a [Search] context, it immediately opens the
database and searches through it based on the search criteria in the search
parameters. You will almost always place a [FoundItems]...[/FoundItems]
context inside the [search] context in order to display the information from the
matching records.

You can also substitute any [xxx] tags in the search parameters, as in
[search db=[userDB]&eqNAMEdata=[username]].

Parameter Description

db Name of the database you wish to search

max A number indicating how many records should be
displayed at once before showing a list of "Show Items
xx-yy" hyperlinks

See the Search command for more information on searching.

SEARCH COMMAND
Syntax: Search?db=DatabaseName&search1data=xx&search2data=yy

Searches for matching records in a database and returns the found ones.

The search command looks through every record in the database and
returns records matching the search criteria. It is extremely fast and flexible -
you can search through multiple fields and sort the results in just about any
way imaginable. The “matched” or “hit” records in the database are displayed
in a [FoundItems] loop.

 66 • WebDNA

SQL/ODBC Note: To search through ODBC-compliant database, use the
[SQL] context.

Searching can be very sophisticated, so we have dedicated a complete
section to it here.

For example, normally you would link to a URL or form containing the
following information):

http://yourserver.com/xx.tpl?command=Search&db=SomeDatabase.db&eqNAMEdata
=Grant

The database “SomeDatabase.db” opens, all records whose name field is
“Grant” found, and any [FoundItems]..[/FoundItems] contexts in the template
xx.tpl filled with the list of found records.

Here are some equivalent ways to send the same command:

HTML Source Description
<a href=”xx.tpl?command=Search&db=

SomeDatabase.db&eqNAMEdata=Grant”> Hyperlink
command

<form method=”POST” action=”xx.tpl”>
 <input type=”hidden” name=”command”

value=”Search”>
 <input type=”hidden” name=”template” value=”xx.tpl”>
 <input type=”hidden” name=”db”

value=”SomeDatabase.db”>
 <input name=”eqNAMEdata” value=”Grant”>
 <input type=”submit”>
 </form>

Form-based
command

SEARCHING COMPARISONS
Searches using comparisons of data.

You can compare data during a search in many different ways -- the field
may match exactly, greater than, less than, in a range, etc. You tell WebDNA
how to compare fields in a database by typing the field name followed by
comp into a URL. As a shortcut, you can also put the two-letter comparison
code in front of the fieldname's data specifier.

http://yourserver.com/xx.tpl?command=Search&db=SomeDatabase.db&eqNAMEdata=Grant
http://yourserver.com/xx.tpl?command=Search&db=SomeDatabase.db&eqNAMEdata=Grant

 Programmer Guide • 67

If your database has a field called "FirstName", and you want to look for
records that are alphabetically arranged after "Grant" in the FirstName field,
then you would enter a URL something like this:

http://Results.tpl?command=search&FirstNamedata=Grant&FirstNamecomp
=gt&db=SomeDatabase.db

shortcut equivalent form for the search above:
http://Results.tpl?command=search>FirstNamedata=Grant&db=SomeData
base.db

The template "Results.tpl" displays after the search, and any [FoundItems]
contexts will be filled with found records. "gt" stands for "greater than,"
meaning the FirstName field must be greater than "Grant," otherwise it will
not be considered a match.

Note: Probably the most commonly used (and simplest) way to search a
database is the "Word Or" search. This most closely matches Yahoo and
Lycos' style of searching, because it finds all records matching at least one
word entered by the visitor, and sorts the "best match" records to the top of
the list. If you have a product database with a Description field, the search
form might look like this:

<form method="POST" action="Results.tpl">
<input type=hidden name="command" value="Search">
Description: <input name="woDescriptiondata"> <input type="submit">
</form>

Below is a list of all the different ways to compare information in a field. All
comparisons are not case-sensitive (unless you force them to be), so "JOE"
is the same as "Joe":

Comp Description

ls less than - lsFirstNamedata=Grant finds all records
whose FirstName field is "less than" Grant.
Comparisons can be alphabetic, numeric, or date,
depending on the type you specify for the field.

 le less than or equal to - leFirstNamedata=Grant finds all
records whose FirstName field is "less than or equal to"
Grant.

eq equal to (default option for numbers) -
eqFirstNamedata=Grant finds all records whose

 68 • WebDNA

FirstName field is "equal to" Grant (upper and lower
case do not matter unless you want them to: see Case
Sensitivity)

 ge greater than or equal to - geFirstNamedata=Grant finds
all records whose FirstName field is "greater than or
equal to" Grant.

 gr greater than - grFirstNamedata=Grant finds all records
whose FirstName field is "greater than" Grant.

 rn range: field contains two values separated by spaces
(or any other delimiter specified by wbrk). The values
may be dates, numbers, or text. You must specify what
type of data the fields are by using fieldnametype=xxx
(where xxx is num or date).

rnZipCodedata=92069 93090&ZipCodetype=num finds
all records whose ZipCode field is numerically in the
range of 92069 - 93090

Note: When specifying a range, the smaller value must
precede the larger value, i.e. rnZipCodedata=92069
93090, not rnZipCodedata=93090 92069.

 mr minimum range value: if no maximum then ge is used
instead

 xr maximum range value: if no minimum than le is used
instead

 ne not equal - neFirstNamedata=Grant finds all records
whose FirstName field is "not equal" Grant.

 bw begins with - bwFirstNamedata=Jo finds all records
whose FirstName field "begins with" Jo, as in "Joe",
"Joseph", "Josephine".

 cl close to (numeric only).
clZipCodedata=92069&clZipCodedata=10 finds all
records whose ZipCode field is within 10 of 92069
(92059 - 92079)

 ws Interpret the words as a single string to be matched
(including spaces etc) This lets you find entire phrases

 Programmer Guide • 69

(including spaces etc.) This lets you find entire phrases,
like "Joe enjoys butter" only if those 3 words are next to
each other in that order, including spaces (unlike wa
and wo, below)

 wa Separate the words and "and" them together (all must
match). Searching for 3 words using wa will match only
if all 3 are in the field, but not necessarily next to each
other.

 wo Separate the words and "or" them together (at least one
must match - default option for text). Search for 3 words
using wo will match if any one of them matches..

 wn word not equal - none of the words match text in the
specified field

[SHOWNEXT] CONTEXT
Syntax: [shownext position=value&method=value&max=number]form or

hypertext link[/shownext]

Result: Creates a list of hypertext links or buttons that display more found
items.

Optional Context Parameters:

• position=value − Acceptable values are Begin, Middle, or End. Begin
loops through “chunks” of indices preceding the ones displayed inside
the [foundItems] loop. Middle displays the range of indices that are
inside [foundItems] loop (rarely, if ever, used). End loops through
“chunks” of indices after the ones displayed inside the [foundItems]
loop. If no position is specified, the default is to loop through both
beginning and end “chunks”, thus displaying all possible [Show Next]
hypertext links.

• method=value − Acceptable values are GET - [SearchString] will
display HREF-style (hypertext link) parameters for the search, and
POST - [SearchString] will display FORM METHOD=POST style
parameters for the search. Use this only if your search is so complex
that it requires more than 255 characters worth of search parameters.

 70 • WebDNA

If no method is specified, then GET is assumed, which means that
HREF-style links are generated.

To display a list of hypertext links that will display more items found in a
search, insert one or more [ShowNext] contexts inside a [Search] context.
This context is only valid inside a [search] context, and will only be used if the
search specified a max=N, and the number of found items is greater than
max.

Optional Context Tags:

• [start] − A number indicating the index of the first item that will be
displayed in this range of found items.

• [end] − A number indicating the index of the last item that will be
displayed in this range of found items.

• [searchstring] − All search parameters necessary to find this “chunk”
of items in the range [Start] - [End]. Either a URL-style string for
method GET or HTML input tags for method POST.

For example:
[search search string]
[shownext position=begin]

Show Items
[start]-[end]

[/shownext]
[foundItems]
[/foundItems]
[shownext position=end]

Show Items
[start]-[end]

[/shownext]
[/search]

If a search returns 50 found items, and the max is set to 10, then [ShowNext]
loops through all the “chunks” of 10 necessary to create hypertext links for
each set of 10 items not displayed inside the [FoundItems] loop:

Show Items 1-10 (this comes from position=beginning)
Show Items 11-20
(Items 21-30 are displayed) (this comes from [foundItems]
Show Items 31-40 (this comes from position=end)
Show Items 41-50

 Programmer Guide • 71

If the [ShowNext] . . . [/ShowNext] context employs the GET method within
an <A HREF> hypertext link, then the entire search string must be written
after the ? following the search command. In other words, the entire search
string, the command and search parameters, must be enclosed by the <A
HREF>

If the [ShowNext] . . . [/ShowNext] context employs the POST method
because the search requires parameters exceeding 255 characters, then all
of the search requirements must be written within <FORM> . . . </FORM.
tags and must include all the required <FORM> elements such as hidden
fields which define field names in the database, field values, and a submit
button.

[SQL] CONTEXT
Syntax: [sql dsn=ODBC data source&statement=sql text]founditems[/sql]

Result: Performs a SQL statement on an ODBC data source.

Required Tag Parameters:

.

.

.

.

.

dsn=ODBC data source − Name of the database you wish to search

statement=text − Any legal SQL statement. Consult an SQL reference
manual for more information.

max=number − A number indicating how many records should be
displayed at once before showing a list of "Show Items xx-yy"
hyperlinks.

Optional Tag Parameters:

username=text − Username required to access this ODBC (Optional
for Windows platform, if none specified, "sa" is used).

password=text − Password required to access this ODBC database
(Optional for Windows platform, if none is specified, a blank password
is used).

Optional Context Parameters
• [NumFound] − A number indicating how many records matched the

search request. Some ODBC drivers do not support this feature, so
WebDNA compensates by visiting every record in the database in

 72 • WebDNA

order to count them. For large datasets, this can be very slow, and
you should consider writing a SQL statement that performs a count
instead. Do not put [NumFound] inside an SQL context that inserts
new records because the statement will be executed twice in order to
perform the count. This will cause an invalid second record to be
added to your database.

• [FoundItems]...[/FoundItems] − Normally a [FoundItems] loop is
placed inside an [SQL] context that has performed a SELECT
statement. This is done so that you can display all the matching
records. You can insert any database field names inside the
[FoundItems] loop to display them in the HTML.

To search through an ODBC-compliant database (or add new
records, or delete or replace records,) place a [SQL] context into a
WebDNA template. You may specify any DSN (Data Source Name)
that has been properly configured through the ODBC setup control
panel on the web server computer.

The [SQL] context is not limited to searching—you may perform any
legal SQL statement, such as SELECT, INSERT, DROP, etc. The
SQL language is too broad to describe here; it is assumed you have a
working knowledge of SQL before using this context.

For example (normally you would put the following text into a .tpl file on your
server and use a web browser to link to it):

[SQL dsn=Pubs&statement=SELECT * from Authors]
Found [NumFound] items

[FoundItems]
[au_lname], [au_fname], [title]

[/FoundItems]
[/SQL]

Whenever WebDNA encounters an [SQL] context, it uses ODBC to attempt
to make a connection to the specified DSN. It then executes the SQL
statement and retrieves the results, if any. For SQL SELECT statements, you
almost always place a [FoundItems]...[/FoundItems] context inside the [SQL]
context so you can display the information from the matching records.

Notice: you can substitute any [xxx] tags in the SQL parameters, as in [SQL
dsn=Pubs&statement=SELECT * from Authors where au_lname >
'[form.name]'].

 Programmer Guide • 73

Databases

[CLOSEDATABASE] TAG
Syntax: [CloseDatabase db=FileName]

Placing [CloseDatabase db=FileName] in your template causes the specified
database file to be written and closed. This is only needed for special cases
(usually before appending to a file) where you need to change a file perhaps
cached in RAM. WebDNA automatically closes databases when it needs
more memory, so you typically do not need to use this tag.

[COMMITDATABASE] TAG
Syntax: [CommitDatabase db=FileName]

Placing [CommitDatabase db=FileName] in your template causes the
specified database file to be written but not closed (so it will remain in RAM).
This is only needed for special cases where you want to be absolutely certain
that a database has been written to disk.

[APPEND] CONTEXT
Syntax: [Append db=DatabaseName]values[/Append]

Appends a new record with the specified field values to the end of a
database.

SQL/ODBC Note: To append new records to the end of an ODBC-compliant
table, use the [SQL] context.

Optional Context Parameters
• autonumber − instructs WebDNA to automatically generate the 'next

highest number' value for the given fieldname.

To add new records to a database, insert an Append context into a template.
(You can also use the Append command from a URL or a FORM.) Whenever
WebDNA encounters an Append context, it immediately adds a new record
to the end of the specified database given the named field values inside the
Append context.

 74 • WebDNA

For Example: Usually, the following text is inserted into a .tpl file on your
server then uses a web browser to link to it:

[Append db=SomeDatabase.db]name=Grant&address=1492 Somewhere
Lane&zip=90000&date=[date][/Append]

The database “SomeDatabase.db” is opened, and a new record is added to
the end. The field name “name” is set to “Grant,” the field name “address” is
set to “1492 Somewhere Lane,” the field name “zip” is set to “90000,” and the
field name “date” is set to the current date. Notice that any WebDNA [xxx]
tags inside the context are first substituted for their real values before being
written to the database. The name of the database itself may also be an [xxx]
tag, as in “[Append [FormVariable]].”

Any field names not existing in the database are ignored, and any fields not
specified are left blank in the new record. Certain letters are illegal, such as
<tab> or <carriage return>, so they are converted to <space> and <soft
return> before being added to the database.

Note: Some computers use the two-character sequence <carriage
return><line feed> to indicate a single end of line, which WebDNA
automatically converts to a single <soft return> character before adding to
the database.

You may specify an absolute or partial path to the database file, as in
“/WebDNA/Folder/SomeDatabase.db” or “../SomeDatabase.db” (relative
paths start in the same folder as the template, just like URLs, so “../” will look
“up” one folder level from the template, and “/” will start at the web server’s
root).

Note: Some database filenames are reserved. You may not create your own
database named “WebCatalog Prefs,” “Users.db,” “ErrorMessages.db,”
“StandardConversions.db,” or “Triggers.db.”

As a rule, database file paths are relative to the local template, or if they
begin with “/” they are relative to the web server’s virtual host root. You may
optionally insert an “^” in front of the file path to indicate the file can be found
in a global root folder called “Globals” inside the WebCatalogEngine folder.
This global root folder is the same regardless of the virtual host.

You can use the 'AUTONUMBER=' parameter with the [append] or [replace]
context to instruct WebDNA to automatically generate the 'next highest
number' value for the given fieldname. This is useful for 'ID' type fields,
where unique values are required.

 Programmer Guide • 75

Here is a demonstration of the AUTONUMBER feature using a WebDNA
TABLE (of course this will work on database files as well).

Example WebDNA code:
[table name=table_1&fields=ID,NAME,EMAIL][/table]

[append

table=table_1&AUTONUMBER=ID]NAME=Scott&EMAIL=scott@here.
com[/append]

[append
table=table_1&AUTONUMBER=ID]NAME=Lee&EMAIL=lee@there.com
[/append]

[append
table=table_1&AUTONUMBER=ID]NAME=OMNI&EMAIL=omni@everywh
ere.com[/append]

[delete table=table_1&eqIDdata=2]
[append

table=table_1&AUTONUMBER=ID]NAME=Lee&EMAIL=lee@there.com
[/append]

[search table=table_1&neIDdata=[blank]]
[founditems]
[ID] - [NAME] - [EMAIL]

[/founditems]
[/search]

Results:

1 - Scott - scott@here.com
3 - OMNI - omni@everywhere.com
4 - Lee - lee@there.com

You can see that WebDNA automatically generated the ID value by
calculating the 'next largest value', given the existing ID values in the table.

[ADDFIELDS] CONTEXT
New in 5.0

Syntax: [AddFields db=…]...WebDNA...[/AddFields]

Result: The [AddFields] context adds new fields to an existing WebDNA
database.

 76 • WebDNA

First, lets use the following code to create a new test database and run a
simple search on the new database.

[closedatabase db=addfields_test.db]

[writefile file=addfields_test.db]ID,NAME
"1","Scott"
"2","Rusty"
"3","David"
"4","Daniel"
"5","Dustin"
[/writefile]

[search db=addfields_test.db&neIDdata=[blank]&rank=off]
[founditems]
[ID] - [NAME]

[/founditems]
[/search]

Results:
1 - Scott
2 - Rusty
3 - David
4 - Daniel
5 - Dustin

Now, lets use the [AddFields] context to add EMAIL and PHONE fields to the
'addfields_test.db' database, initializing the new field value with some
arbitrary data. We will again perform a simple search on the same database
to confirm that the new fields, and field data, have been added.

We use the following WebDNA code:
[AddFields db=addfields_test.db]EMAIL=us.here.com&PHONE=123-

1235[/AddFields]

[search db=addfields_test.db&neIDdata=[blank]&rank=off]
[founditems]
[ID] - [NAME] - [EMAIL] - [PHONE]

[/founditems]
[/search]

Results:

 Programmer Guide • 77

1 - Scott - us.here.com - 123-1235
2 - Rusty - us.here.com - 123-1235
3 - David - us.here.com - 123-1235
4 - Daniel - us.here.com - 123-1235
5 - Dustin - us.here.com - 123-1235

Note that the [AddFields] context will not add fieldnames that already exist in
the target database.

APPEND COMMAND
Syntax: Append?db=DatabaseName&field1=xx&field2=xx

Result: Appends a new record with the specified field values to the end of a
database.

To add new records to a database, use a web browser to link to a URL
containing the Append command (alternately, you may embed an [Append]
context into a template). Whenever WebDNA receives an Append command,
it immediately adds a new record to the end of the specified database given
the named field values.

SQL/ODBC Note: To append new records to the end of an ODBC-compliant
table, use the [SQL] context.

For example (normally you would link to a URL or form containing the
following information):

http://yourserver.com/xx.tpl?command=Append&db=SomeDatabase.db&name=
Grant&address=1492%20Somewhere%20Lane&zip=90000

The database “SomeDatabase.db” opens, and a new record is added to the
end. The field name “name” is set to “Grant,” the field name “address” is set
to “1492 Somewhere Lane,” and the field name “zip” is set to “90000.” The
page sent back to the browser will be xx.tpl.

Any field names not existing in the database are ignored, and any fields you
do not specify are left blank in the new record. Certain letters are illegal, such
as <tab> or <carriage return>, so they are converted to <space> and <soft
return> before being added to the database. Some computers use the two-
character sequence <carriage return><line feed> to indicate a single end of
line, which is automatically converted to a single <soft return> character
before being added to the database.

http://yourserver.com/xx.tpl?command=Append&db=SomeDatabase.db&name=Grant&address=1492%20Somewhere%20Lane&zip=90000
http://yourserver.com/xx.tpl?command=Append&db=SomeDatabase.db&name=Grant&address=1492%20Somewhere%20Lane&zip=90000

 78 • WebDNA

You may specify a relative or full URL to the database file, as in
“/WebDNA/Folder/SomeDatabase.db” or “../SomeDatabase.db.” The path to
the database is always relative to the template URL, so if the database is in
the same folder as the template, the path would be “SomeDatabase.db”, and
if the database was one folder up, then the path would be
“../SomeDatabase.db.”

Note: As a general rule, all database file paths are relative to the local
template, or if they begin with “/” they are relative to the web server’s virtual
host root. As of version 3.0, you may optionally put “^” in front of the file path
to indicate the file can be found in a global root folder called “Globals” inside
the WebCatalogEngine folder. This global root folder is the same regardless
of the virtual host.

Note: You may force a visitor to enter something into a field by using the
RequiredFields parameter in the URL. Setting RequiredFields=field1+field2
+field3 displays an error message if the visitor forgets to enter text into any of
those three fields. RequiredFields works for all commands, not just this one.

Other ways to send the same command:

HTML Source Description
<a href=”xx.tpl?command=Append&db=

SomeDatabase.db&name=Grant&address
=1234%20Somewhere”>

Hyperlink
command

<form method=”POST” action=”xx.tpl”> <input
type=”hidden” name=”command”
value=”Append”>

 <input type=”hidden” name=”db”
value=”SomeDatabase.db”>

 <input name=”name”>
 <input name=”address”>
 <input type=”submit”>
 </form>

Form-based
command

DELETE COMMAND
Syntax: Delete?db=DatabaseName&searchData=xx

Result: Deletes all matching records from the database.

To delete records from a database, use a web browser to link to a URL
containing the Delete command (alternately, you may embed a [Delete] tag
into a template).

 Programmer Guide • 79

Whenever WebDNA receives a Delete command, it immediately searches for
all matching records and deletes them from the database.

SQL/ODBC Note: To append new records to the end of an ODBC-compliant
table, use the [SQL] context.

For example (normally you would link to a URL or form containing the
following information):

http://yourserver.com/xx.tpl?command=Delete&db=SomeDatabase.db&eqNAME
data=Grant

The database “SomeDatabase.db” opens, and all records whose name field
is “Grant” are deleted. The page sent back to the browser is xx.tpl

Other ways to send the same command include:

HTML Source Description

<a href=”xx.tpl?command=Delete&db=
SomeDatabase.db&eqNAMEdata=Grant”>

Hyperlink
command

<form method=”POST” action=”xx.tpl”>
 <input type=”hidden” name=”command”

value=”Delete”>
 <<input name=”eqNAMEdata”>
 <input type=”submit”>

 </form>

Form-based
command

Note: As a rule, all database file paths are relative to the local template, or if
they begin with “/” they are relative to the web server’s virtual host root. You
may optionally put “^” in front of the file path to indicate the file can be found
in a global root folder called “Globals” inside the WebCatalogEngine folder.
This global root folder is the same regardless of the virtual host.

[APPENDFILE] CONTEXT
Syntax: [AppendFile FileName]Text[/AppendFile]

Result: Writes text to the end of an existing file.

To add text to the end of an arbitrary text file, place an [AppendFile] context
into a template. [AppendFile] creates a new file if one does not already exist.

http://yourserver.com/xx.tpl?command=Delete&db=SomeDatabase.db&eqNAMEdata=Grant
http://yourserver.com/xx.tpl?command=Delete&db=SomeDatabase.db&eqNAMEdata=Grant

All text is placed at the end of the file. The file must not be a database file
currently open and in use by WebDNA. See [WriteFile] for further details.

Note: [AppendFile] does not ‘understand’ databases .To append a new
record to the end of a database, use Append instead.

For Example: Usually, the following text is placed into a .tpl file on your
server then uses a web browser to link to it):

[AppendFile SomeTextFile]Hello, my name is Grant. The time is [time]
This is a second line[/AppendFile]

The text file “SomeTextFile” opens, and displays the following text:
Hello, my name is Grant. The time is 13:43:01

A second line is written at the end of the file. Notice that carriage returns
inside the context are written to the file exactly as they appear. Also notice
that any WebDNA [xxx] tags inside the context are substituted for their real
values before being written to the file. You may specify a full or partial path to
the file, as in “/Some Folder/file.txt” (starting from the web server’s root) or
“LocalFolder/file.txt” (starting in the same folder as the template file, looking
down into a folder called “LocalFolder”).

Security Note: By default, all files created by WebDNA are tagged with a
special code telling WebSTAR not to display them via URL. If you want files
to be visible to outside browsers, use the optional settings below.

Parameter Description

Secure “T” for files that should be secure—WebSTAR will not
display them.

“F” for files that should be visible via URL—WebSTAR will
display them.

For example:
[WriteFile secure=F&file=SomeFile]...[/WriteFile]

File When you use the secure option above, you must also
provide the name (or relative path) of the file to create.

 80 • WebDNA

 Programmer Guide • 81

[EXCLUSIVELOCK] CONTEXT

Syntax: [ExclusiveLock database list]...WebDNA...[/ExclusiveLock]

Result: Prevents other threads from simultaneously accessing a group of
databases.

SQL/ODBC Note: all database, table, and record locking mechanisms are
entirely controlled by the SQL server. [ExclusiveLock] is used only for
WebDNA-native databases.

To prevent a group of databases from being modified by other threads (other
‘hits’ to the server, or other templates or triggers), wrap an [ExclusiveLock]
context around the WebDNA code that will be making the important exclusive
changes.

For Example (normally you would put the following text into a .tpl file on your
server and use a web browser to link to it):

[ExclusiveLock db=orders.db&db=lineitems.db&db=accesslog.db]
...search, delete, or modify any of orders.db, lineitems.db, or
accesslog.db while being assured that no other threads can modify any
of these databases until the closing /ExclusiveLock tag is reached.
[/ExclusiveLock]

The list of database names is first alphabetized to maintain a consistent
locking order (a technique which prevents internal deadlocks). Then, each
database lock is acquired, one at a time, until all locks are acquired. Then,
the interior WebDNA is executed. If any lock cannot be acquired, the other
databases are unlocked and the interior WebDNA is not executed.

Parameter Description

db path to first database file, relative to this template.
db path to second database file, relative to this template.

db ...path to nth database file, relative to this template. Note
that all parameters are named exactly the same: “db”

[DELETE] TAG
Syntax: [Delete db=DatabasePath&eqNAMEdata=Fred]

 82 • WebDNA

Placing [Delete db=DatabasePath&eqNAMEdata=Fred] in your template
opens the database specified by DatabasePath, finds all the records whose
Name field contains “Fred,” and deletes those records. Any valid search
parameters are allowed, as defined in the Search command and [Search]
context.

Note: if the database has username and password fields, then the records
will not be deleted unless the visitor’s web browser username/password
match the record’s username/password.

SQL/ODBC Note: To delete records from an ODBC-compliant table, use the
[SQL] context.

[FLUSHDATABASES] TAG
Syntax: [FlushDatabases]

Placing [FlushDatabases] in your template causes all databases to be written
and closed. This is only needed for special cases (usually before appending
to a file) where you need to change a file that may be cached in RAM, and
you do not know the exact name of the database. WebDNA automatically
closes databases when it needs more memory, so you typically do not need
to use this tag.

[LISTDATABASES] CONTEXT
Syntax: [listdatabases]Database Tags[/listdatabases]

Result: Lists all the currently open databases.

Optional Context Tags:

• [Name] − The name of the database (can be a partial or full path).

• [Index] − A number from 1 to the number of databases, indicating this
database’s index in the list

• [NumRecords] − The number of records (rows) in this database.

• [NumFields] − The number of fields (columns) in this database

• [xxx] − Any other WebDNA tag or context, including [ListFields].

To display a list of all the databases that WebDNA currently has open, insert
a [ListDatabases] context into a template. Additionally, you can insert a

 Programmer Guide • 83

[ListFields] context inside the [ListDatabases] context to display the names of
all the fields in the database.

For example:
[listdatabases]
Name: [name]

Records: [numRecords]
<hr>
[/listdatabases]

This is a very useful debugging tool. Be aware that it lists all open databases,
including preference files, tax and shipping databases, user databases, etc.
In other words, you may get more than you expect when you use this
context.

[LISTFIELDS] CONTEXT
Syntax: [listfields databaseName]Database Tags[/listfields]

Result: Lists all the fields in the specified database.

Optional Context Tags:

• [fieldname] − The name of the field.

• [index] − A number from 1 to the number of fields, indicating this
field’s index in the list.

To display a list of all the fields in a particular database, insert the [ListFields]
context into a template. This context may be placed inside the
[ListDatabases] context to automatically list all the fields in all the databases.

For example:
[listdatabases]
Fields in database [name]:

[listfields [name]]
Fieldname: [name]

[/listfields]
<hr>
[/listdatabases]

[LOOKUP] TAG
Syntax: [LookUp

db=databasePath&value=searchValue&lookInField=searchField&retur
nField=fieldName¬Found=TextIfNotFound]

 84 • WebDNA

Placing [LookUp] in your template performs an extremely fast search through
the specified database and returns either the value of the returnField in the
found record, or the literal text of the notFound value. The search is a case-
sensitive, exact match, so “Grant” does not equal “grant.” If you want more
control over the search criteria, use a [Search] context instead.

[TABLE] CONTEXT
New in 5.0
Syntax: [table name=...&fields=,,...,]<fieldname 1>,<fieldname

2>,…,<fieldname n>[/table]

Result: Enables the WebDNA programmer to quickly create a temporary 'in
line' database table that is local to the template and not part of the global
database cache. A table can be used in any context that accepts a database
'db' as a parameter.

Optional Tag Parameters:

• name - A user assigned name used to reference the table during the
duration of the template.

• fields - A comma delimited, ordered, list of fieldnames to be used for
the table.

 Search a Table

Lets create a table and perform a basic search on it.

We use the following code...
[table name=products&fields=SKU,NAME,DESC]
1001 Red Widget A small red widget
1002 Blue Widget A small blue widget
1003 Green Widget A small green widget
[/table]

[search table=products&neSKUdata=[blank]]
Found [numfound] items in the products table.

[founditems]
[SKU] - [DESC]

[/founditems]
[/search]

 Programmer Guide • 85

Results....
Found 3 items in the products table.
1001 - A small red widget
1002 - A small blue widget
1003 - A small green widget

A table can be very useful if you want to perform a secondary search on the
results of a previous search.

Examples with ConvertChars/Words

You can use a table to quick create a table to be use with the ConvertChars,
and ConvertWords contexts

[table name=t1&fields=from,to]
a A
b B
c C
[/table]

[table name=t2&fields=from,to]
webdna WebDNA
tables Tables
smsi SMSI
[/table]

[convertchars table=t1]abc[/convertchars]

[convertwords table=t2]webdna tables, brought to you by

smsi![/convertwords]

Results...
ABC
WebDNA Tables, brought to you by SMSI!

Example with ListFiles

Tables are also very useful for sorting/searching the results of other 'iterative'
WebDNA contexts. For example, lets sort the results of a [listfiles] context...

[table name=filesort&fields=filename,size,date][!]
[/!][listfiles path=.]

 86 • WebDNA

[filename][size] [createdate]
[/listfiles][/table]

Directory listing - sorted by filename

[search

table=filesort&neFILENAMEdata=[blank]&asFILENAMEsort=1]
[founditems]
[filename] - [size] - [date]

[/founditems]
[/search]

Directory listing - sorted by file size

[search

table=filesort&neFILENAMEdata=[blank]&asSIZEsort=1&SIZEt
ype=num]

[founditems]
[filename] - [size] - [date]

[/founditems]
[/search]

Results...

Directory listing - sorted by filename

Table_Context_-_---1---.tpl - 1093 - 01/02/2003
Table_Context_-_---2---.tpl - 1066 - 01/02/2003
Table_Context_-_---3---.tpl - 940 - 01/02/2003
Table_Context_-_---4---.tpl - 3445 - 01/02/2003
Table_Context_-_---5---.tpl - 529 - 01/02/2003
Table_Context_-_---6---.tpl - 166 - 01/02/2003
table_tutorial5a.inc - 2255 - 01/02/2003

Directory listing - sorted by file size
Table_Context_-_---6---.tpl - 166 - 01/02/2003
Table_Context_-_---5---.tpl - 529 - 01/02/2003
Table_Context_-_---3---.tpl - 940 - 01/02/2003
Table_Context_-_---2---.tpl - 1066 - 01/02/2003
Table_Context_-_---1---.tpl - 1093 - 01/02/2003
table_tutorial5a.inc - 2255 - 01/02/2003
Table_Context_-_---4---.tpl - 3445 - 01/02/2003

Note that we had to comment out some line endings. This is because the
WebDNA that is parsed between the [table] tags must evaluate to a list of
'records', with the 'fields' delimited by tabs and each 'record' ending with a

 Programmer Guide • 87

line ending (<cr><lf> or <lf> or <cr>). In other words, exactly the same format
as a WebDNA database.

Lets combine this with a webdna [function] context to list all files in a folder,
and its sub-folders.
The new WebDNA [function] context is described in the 'Function Context'
tutorial.

Results...
Display the folder tree of the 'user_files' folder.

 tutorials
 Array_Context
 Function_Context
 ISP_Sandbox
 Scope
 Special_Scripts
 Table_Context
 XML_Contexts
 XSL-XSLT_Contexts

Display the complete file tree of the 'user_files' folder
 database1.db
 example1.tpl
 sandbox_admin_redirect.tpl
 tutorials
 Array_Context
 Array_Context_-_---1---.tpl
 Array_Context_-_---2---.tpl
 Array_Context_-_---3---.tpl
 Array_Context_-_---4---.tpl
 Array_Context_-_---5---.tpl
 Array_Context_-_---6---.tpl
 Array_Context_-_---7---.tpl
 array_tutorial6a.inc
 create_tutorial.tpl
 Function_Context
 functions.db
 functions_test.db
 Function_Context_-_---1---.tpl
 Function_Context_-_---2---.tpl
 Function_Context_-_---3---.tpl
 Function_Context_-_---4---.tpl
 Function_Context_-_---5---.tpl
 Function_Context_-_---6---.tpl
 Function_Context_-_---7---.tpl
 Function_Context_-_---8---.tpl
 Function_Context_-_---9---.tpl
 function_tutorial8a.inc
 header.inc

 88 • WebDNA

 ISP_Sandbox
 ISP_Sandbox_-_---1---.tpl
 ISP_Sandbox_-_---2---.tpl
 ISP_Sandbox_-_---3---.tpl
 ISP_Sandbox_-_---4---.tpl
 ISP_Sandbox_-_---5---.tpl
 ISP_Sandbox_-_---6---.tpl
 Scope
 products.db
 Scope_-_---1---.tpl
 Scope_-_---2---.tpl
 Scope_-_---3---.tpl
 Scope_-_---4---.tpl
 Scope_-_---5---.tpl
 Scope_-_---6---.tpl
 Scope_-_---7---.tpl
 Scope_-_---8---.tpl
 Scope_-_---9---.tpl
 Scope_tutorial7a.inc
 testcart
 Special_Scripts
 Special_Scripts_-_---1---.tpl
 Special_Scripts_-_---2---.tpl
 Special_Scripts_-_---3---.tpl
 Special_Scripts_-_---4---.tpl
 Table_Context
 Table_Context_-_---1---.tpl
 Table_Context_-_---2---.tpl
 Table_Context_-_---3---.tpl
 Table_Context_-_---4---.tpl
 Table_Context_-_---5---.tpl
 Table_Context_-_---6---.tpl
 table_tutorial5a.inc
 XML_Contexts
 example1.xml
 XML_Contexts_-_---1---.tpl
 XML_Contexts_-_---10---.tpl
 XML_Contexts_-_---11---.tpl
 XML_Contexts_-_---12---.tpl
 XML_Contexts_-_---13---.tpl
 XML_Contexts_-_---14---.tpl
 XML_Contexts_-_---15---.tpl
 XML_Contexts_-_---2---.tpl
 XML_Contexts_-_---3---.tpl
 XML_Contexts_-_---4---.tpl
 XML_Contexts_-_---5---.tpl
 XML_Contexts_-_---6---.tpl
 XML_Contexts_-_---7---.tpl
 XML_Contexts_-_---8---.tpl

 Programmer Guide • 89

 XML_Contexts_-_---9---.tpl
 xml_tutorial12a.inc
 xml_tutorial8a.inc
 XSL-XSLT_Contexts
 example1.xml
 example1.xsl
 example2.xsl
 music.db
 XSL-XSLTtutorial1.inc
 XSL-XSLT_Contexts_-_---1---.tpl
 XSL-XSLT_Contexts_-_---2---.tpl
 XSL-XSLT_Contexts_-_---3---.tpl
 XSL-XSLT_Contexts_-_---4---.tpl
 XSL-XSLT_Contexts_-_---5---.tpl
 XSL-XSLT_Contexts_-_---6---.tpl
 XSL-XSLT_Contexts_-_---7---.tpl
 XSL-XSLT_Contexts_-_---8---.tpl
 XSL-XSLT_Contexts_-_---9---.tpl
 welcome.tpl

In the example above, we used a single table to store all the folder and file
info. We could have created a separate table for each folder, which would
provide more flexibility for sorting the folders and files (which is what we did
to create the 'file tree' popup window used in this lab application.).

[QUIT] COMMAND
Syntax: Quit

Result: Commits all databases to disk and quits the CGI.

Note: This command is no longer supported as of Version 4.0.

To commit and close all databases at once, send a Quit command to
WebDNA. This is most often used when you have copied (or FTP-ed) new
database files to the disk and you want WebDNA to reload them all. Plug-ins
cannot quit, so if you are using the plug-in version of WebDNA, it will just
commit and close databases.

For example (normally you would put the following text into a .tpl file on your
server and use a web browser to link to it):

http://www.yourserver.com/WebDNA/xx.tpl?command=Quit

There are no parameters to the Quit command.

http://www.yourserver.com/WebCatalog/xx.tpl?command=Quit

 90 • WebDNA

HTML Source Description
 Hyperlink to WebDNA plug-in.

The template is ignored.
<form method=”POST”

action=”xx.tpl”>
 <input type=”hidden”

name=”command”
value=”Quit”>

 <input type=”submit”>
 </form>

Form-based command to plug-in
(notice the template is part of the
action, but it is ignored)

[REPLACE] CONTEXT
Syntax: [replace db=databasepath&search criteria]new values[/replace]

Result: Replaces each found record in a database with the new field values.

Required Tag Parameters:

• db=databasepath − URL-style path to database file.

• search criteria − Search information that describes which records
should be found and replaced. All found records are replaced with the
same values. Can be any complex search criteria; works exactly like
Search command or [Search] context.

Optional Tag Parameters:

• append=Boolean − “T” if you want a new record to be added to the
end of the database in the case where no records were found to be
replaced. Any fields you do not specify are left blank in the new
record.

• autonumber − instructs WebDNA to automatically generate the 'next
highest number' value for the given fieldname.

To replace records in a database, add a [Replace] context to the template
(alternately, you may use the replace command from a URL or a form).
Whenever WebDNA encounters a [Replace] context, it immediately searches
for the specified records in the database, and replaces those records’ fields
with the named field values inside the Replace context.

 Programmer Guide • 91

For example (normally you would put the following text into a .tpl file on your
server and use a web browser to link to it):

[replace db=SomeDatabase.db&eqNAMEdata=Grant]
name=John[/replace]

The database SomeDatabase.db is opened, all records whose name field is
Grant are found, and then set to John. All other fields in the records are left
untouched. Notice that any WebDNA [xxx] tags inside the context are first
substituted for their real values before being written to the database. The
name of the database itself may also be an [xxx] tag, as in “[Replace
db=[FormVariable]]”.

Because this context replaces all found records with new values, it is useful
for conducting either bulk or individual database updates. By using the
append=T parameter, it is also possible to create a single template for
updating databases instead of creating one template for additions, one for
replacements, etc.

For example (normally you would put the following text into a .tpl file on your
server and use a web browser to link to it):

[Replace db=SomeDatabase.db&eqNAMEdata=Grant]
name=John&address=1492 Somewhere

Lane&zip=90000&date=[date][/Replace]

The database "SomeDatabase.db" opens and all records whose name field
is "Grant" are found. The field names "name" is set to "John," "address" is
set to "1492 Somewhere Lane," "zip" is set to "90000," and "date" is set to
the current date. Notice that any WebDNA [xxx] tags inside the context are
first substituted for their real values before being written to the database. The
name of the database itself may also be an [xxx] tag, as in "[Replace
db=[FormVariable]]".

Any field names not existing in the database are ignored, and if you leave
some existing field names out of the replace context, they will remain
unchanged in the database. Certain letters are illegal, such as <tab> or
<carriage return>, so they are converted to <soft tab> and <soft return>
before being added to the database. Some computers use the two-character
sequence <carriage return><line feed> to indicate a single end of line, which
is automatically converted to a single <soft return> character before being
added to the database. These 'soft' characters are automatically converted
back to 'hard' versions (the originals) whenever you retrieve fields from a
search of the database.

You may specify an absolute or relative path to the database file, as in
"/WebDNA/GeneralStore/SomeDatabase.db" or "../SomeDatabase.db".

 92 • WebDNA

Note: Normally all database filepaths are relative to the local template, or if
they begin with "/" they are relative to the web server's virtual host root
(MacOS and Unix versions only; PC versions treat the DBServer.exe folder
as root regardless of the virtual host). You may optionally put "^" in front of
the file path to indicate the file can be found in a global root folder called
"Globals" inside the WebCatalogEngine folder. This global root folder is the
same regardless of the virtual host.

You can use the 'AUTONUMBER=' parameter with the [append] or [replace]
context to instruct WebDNA to automatically generate the 'next highest
number' value for the given fieldname. This is useful for 'ID' type fields,
where unique values are required.

Here is a demonstration of the AUTONUMBER feature using a WebDNA
TABLE (of course this will work on database files as well).

Example WebDNA code:
[table name=table_1&fields=ID,NAME,EMAIL][/table]

[append

table=table_1&AUTONUMBER=ID]NAME=Scott&EMAIL=scott@here.
com[/append]

[append
table=table_1&AUTONUMBER=ID]NAME=Lee&EMAIL=lee@there.com
[/append]

[append
table=table_1&AUTONUMBER=ID]NAME=OMNI&EMAIL=omni@everywh
ere.com[/append]

[delete table=table_1&eqIDdata=2]
[append

table=table_1&AUTONUMBER=ID]NAME=Lee&EMAIL=lee@there.com
[/append]

[search table=table_1&neIDdata=[blank]]
[founditems]
[ID] - [NAME] - [EMAIL]

[/founditems]
[/search]

Results:

1 - Scott - scott@here.com

 Programmer Guide • 93

3 - OMNI - omni@everywhere.com
4 - Lee - lee@there.com

You can see that WebDNA automatically generated the ID value by
calculating the 'next largest value', given the existing ID values in the table.

REPLACE COMMAND
Syntax: Replace?db=DatabaseName&searchdata=xx&field1= xx&field2=xx

Result: Replaces each found record in a database with the new field values.

To replace records in a database, use a web browser to link to a URL
containing the Replace command (alternately, you may embed a [Replace]
context into a template). Whenever WebDNA receives a Replace command,
it immediately searches for the specified records in the database and
replaces those records’ fields with the named field values.

SQL/ODBC Note: To replace records in an ODBC-compliant table, use the
[SQL] context.

For example (normally you would link to a URL or form containing the
following information):

http://yourserver.com/xx.tpl?command=Replace&db=SomeDatabase.db&eqNAM
Edata=Grant&name=John&address=1492%20Somewhere%20Lane&zip=90
000

The database “SomeDatabase.db” opens and all records whose name field
is “Grant” are found. The field names “name” is set to “John,” “address” is set
to “1492 Somewhere Lane,” and “zip” is set to “90000.”

Any fieldnames not existing in the database are ignored, and any fields you
do not specify are left blank in the new record. Certain letters are illegal, such
as <tab> or <carriage return>, so they are converted to <space> and <soft
return> before being added to the database. Some computers use the two-
character sequence <carriage return><line feed> to indicate a single end of
line, which is converted automatically to a single <soft return> character
before being added to the database.

http://yourserver.com/xx.tpl?command=Replace&db=SomeDatabase.db&eqNAMEdata=Grant&name=John&address=1492%20Somewhere%20Lane&zip=90000
http://yourserver.com/xx.tpl?command=Replace&db=SomeDatabase.db&eqNAMEdata=Grant&name=John&address=1492%20Somewhere%20Lane&zip=90000
http://yourserver.com/xx.tpl?command=Replace&db=SomeDatabase.db&eqNAMEdata=Grant&name=John&address=1492%20Somewhere%20Lane&zip=90000

 94 • WebDNA

You may specify a relative or full URL to the database file, as in “/WebDNA/
Folder/SomeDatabase.db” or “../SomeDatabase.db”. The path to the
database is always relative to the template URL, so if the database is in the
same folder as the template, the path would be “SomeDatabase.db”, and if
the database was one folder up, then the path would be
“../SomeDatabase.db”.

Note: You may force the visitor to enter something into a field by using the
RequiredFields parameter in the URL. Setting
RequiredFields=name+address +city displays an error message if the visitor
forgets to enter text into any of those three fields. RequiredFields works for
all commands, not just this one.

Several equivalent ways to send the same command include:

HTML Source Description
<a href=”xx.tpl?command=Replace&db=Some

Database.db&name=John&address=1234%20
Somewhere&eqNAMEdata=Grant”>

Hyperlink
command

<form method=”POST” action=”xx.tpl”>
 <input type=”hidden” name=”command”

value=”Replace”>
 <input type=”hidden” name=”template” value=”xx.tpl”>
 <input type=”hidden” name=”db”

value=”SomeDatabase.db”>
 <input name=”eqNAMEdata” value=”John”>
 <input name=”name”>
 <input name=”address”>
 <input type=”submit”>
 </form>

Form-based
command

Parameters for Replace include:

Parameter Description

Append (Optional) “T” if you want a new record to be added
to the end of the database in the case where no
records were found to be replaced.

[REPLACEFOUNDITEMS] CONTEXT

 Programmer Guide • 95

Syntax: [ReplaceFoundItems]field1=value1&field2=value2[/ReplaceFoundItems]

Result: Replaces each found record in a database with the new field values.

SQL/ODBC Note: To replace records in an ODBC-compliant table controlled
by a SQL server, use the [SQL] context.

To replace field values of records in a database, put a [ReplaceFoundItems]
context into a template inside a [Search] context. As each matching record is
found, that record’s fields inside the [ReplaceFoundItems] context are
replaced with new values.

Note: This new context is much faster than the old technique of nesting a
[Replace] context inside a [FoundItems] context. For example: if you
currently use something like this to modify many records in a database...

 [Search db=xx.db&neSKUdata=0]
 [FoundItems]
 [Replace
 db=xx.db&eqSKUdata=[sku]]value=[math][value]+1[/math][/Replace]
 [/FoundItems]
 [/Search]

then you can change it to the following in order to speed it up considerably:
 [Search db=xx.db&neSKUdata=0]
 [ReplaceFoundItems]value=[math][value]+1[/math][/Replace]
 [/Search]

For example (normally you would put the following text into a .tpl file on your
server and use a web browser to link to it):

 [Search db=products.db&neSKUdata=0]
 [ReplaceFoundItems]price=[math][price]*1.1[/math][/ReplaceFoundItems]
 [/Search]

In the example above, the database “products.db” opens, all records whose
sku field is not “0” found, and each of those found record’s price fields
incremented by 10%. As each found record is visited, that record’s field
values are available inside the context so you can use them to compute new
values. This behavior is very different from the simpler [Replace] context,
which replaces all found items with the same value.

Any fieldnames that do not exist in the database are ignored, and if you leave
some existing fieldnames out of the replace context, they will remain
unchanged in the database. Certain letters are illegal, such as <tab> or
<carriage return>, so they are converted to <soft tab> and <soft return>
before being added to the database. Some computers use the two-character
sequence <carriage return><line feed> to indicate a single end of line, which

 96 • WebDNA

is automatically converted to a single <soft return> character before being
added to the database. These ‘soft’ characters are automatically converted
back to ‘hard’ versions (the originals) whenever you retrieve fields from a
search of the database.

You may specify an absolute or relative path to the database file, as in
“/WebDNA/GeneralStore/SomeDatabase.db” or “../SomeDatabase.db”. You
may also place “^” in front of the database path to indicate that the file can be
found in a global root folder called “Globals” inside the WebCatalogEngine
folder.

Contrast between [ReplaceFoundItems] and [Replace]
[Search db=products.db&neSKUdata=0]

[ReplaceFoundItems]price=[math]
[price]*1.1[/math] [/ReplaceFoundItems]
[/Search]

[Replace
db=products.db&neSKUdata=0
] price=10[/Replace]

SKU Price Before Price After SKU Price
Before

Price
After

1 5 5.5 1 5 10

2 10 11 2 10 10

3 15 16.5 3 15 10

4 20 22 4 20 10

5 35 38.5 5 35 10

[SQL] CONTEXT
Syntax: [sql dsn=ODBC data source&statement=sql text]founditems[/sql]

Result: Performs a SQL statement on an ODBC data source.

Required Tag Parameters:

• dsn=ODBC data source − Name of the database you wish to search

• statement=text − Any legal SQL statement. Consult an SQL
reference manual for more information.

 Programmer Guide • 97

• max=number − A number indicating how many records should be
displayed at once before showing a list of “Show Items xx-yy”
hyperlinks.

Optional Tag Parameters:

• username=text − Username required to access this ODBC database
(if none specified, “sa” is used).

• password=text − Password required to access this ODBC database
(if no is specified, a blank password is used).

Optional Context Parameters
• [NumFound] − A number indicating how many records matched the

search request. Some ODBC drivers do not support this feature, so
WebDNA compensates by visiting every record in the database in
order to count them. For large datasets, this can be very slow, and
you should consider writing a SQL statement that performs a count
instead. Do not put [NumFound] inside an SQL context that inserts
new records because the statement will be executed twice in order to
perform the count. This will cause an invalid second record to be
added to your database.

• [FoundItems]...[/FoundItems] − Normally a [FoundItems] loop is
placed inside an [SQL] context that has performed a SELECT
statement. This is done so that you can display all the matching
records. You can insert any database field names inside the
[FoundItems] loop to display them in the HTML.

To search through an ODBC-compliant database (or add new
records, or delete or replace records,) place an [SQL] context into a
WebDNA template. You may specify any DSN (Data Source Name)
that has been properly configured through the ODBC setup control
panel on the web server computer.

The [SQL] context is not limited to searching—you may perform any
legal SQL statement, such as SELECT, INSERT, DROP, etc. The
SQL language is too broad to describe here; it is assumed you have a
working knowledge of SQL before using this context.

For example:
[SQL dsn=Pubs&statement=SELECT * from Authors]
Found [NumFound] items

[FoundItems]
[au_lname], [au_fname], [title]

 98 • WebDNA

[/FoundItems]
[/SQL]

Whenever WebDNA encounters an [SQL] context, it uses ODBC to attempt
to make a connection to the specified DSN. It then executes the SQL
statement and retrieves the results, if any. For SQL SELECT statements, you
almost always place a [FoundItems]...[/FoundItems] context inside the [SQL]
context so you can display the information from the matching records.

Shopping

ADD COMMAND
Syntax: Add?db=DatabaseName&cart=[cart]&sku=xx&quantity=xx

Adds a product to the specified shopping cart.

To add products to a visitor’s shopping cart, click a URL containing the Add
command (alternately, you may embed an [AddLineItem] context into a
template). Whenever WebDNA receives an Add command, it opens the
shopping cart file (creating a new one if necessary) and adds the product
(identified by its SKU) to the end of the LineItems in the shopping cart. The
item’s price, taxable, canEmail, and unitShipCost information is found by
looking for the values of those fields in the product database. You can use a
different price by creating a Formulas.db database. Also see Remove, Clear,
ShowCart, and Purchase.

For example, normally you would link to a URL or form containing the
following information:

http://yourserver.com/xx.tpl?command=Add&db=SomeDatabase.db&sku=1234&
cart=5678&quantity=5

The database “SomeDatabase.db” opens, and sku 1234 is found. Shopping
Cart file “5678” opens, and a new line item is added to the bottom of the list.
The item’s quantity is 5 (as specified in the command above), and the price is
taken from the database’s price field (or, if a formula for [price] is available in
Formulas.db, the price is calculated using that formula). The page sent back
to the browser will be xx.tpl, which typically contains a [LineItems] loop to
display the current items in the cart.

Note: normally all database file paths are relative to the local template. If
they begin with “/” they are relative to the web server’s virtual host root. As of

http://yourserver.com/xx.tpl?command=Add&db=SomeDatabase.db&sku=1234&cart=5678&quantity=5
http://yourserver.com/xx.tpl?command=Add&db=SomeDatabase.db&sku=1234&cart=5678&quantity=5

 Programmer Guide • 99

version 3.0, you may optionally put a “^” in front of the file path to indicate the
file can be found in a global root folder called “Globals” inside the
WebCatalogEngine folder. This global root folder is the same regardless of
the virtual host.

Note: you may add a maximum of 100 lineitems to a shopping cart.

 100 • WebDNA

Here are the parameters to the Add command:

Parameter Description

db Product database that contains the SKU, price, and
other information

Sku Uniquely identifies which product should be added to
the cart.

Cart Shopping cart file that is to be affected

password (Optional) In order to change the price (see below)
you must provide the lineitem change password,
which can be set in the preferences.

Optional
Parameters

Description

price (Optional) Sometimes you may need to change the
price of a product while adding it to the cart. Normally
you use a formula to vary pricing, but sometimes this
alternate technique is preferred. Remember to put the
lineitem change password (see above) into the
parameters. There is a security risk when using this
technique, because outsiders can change the price to
anything they like.

textA

(Optional) This is extra information of any kind
associated with this line item. Often used to store
extra product information, such as “shoe size” or
“color.” Also used to pass catalog database fields
such as [title] through to the order file so they may be
viewed later without needing the original database to
look for the value of [title].

textB (Optional) Same as textA above.

textC (Optional) Same as textA above.

textD (Optional) Same as textA above.

textE (Optional) Same as textA above.

Parameter Description

 Programmer Guide • 101

quantity (Optional) Tells how many of this SKU should be
added to the cart. This quantity is used when
calculating subtotals, unitShipCost, etc.

taxable (Optional) “T” or “F”. Overrides “taxable” field in the
database - normally the information about the item’s
taxable status is taken from a field called “taxable.”

canEmail (Optional) “T” or “F”. Overrides “canEmail” field in the
database - normally the information about the item’s
canEmail (electronically deliverable) status is taken
from a field called “canEmail.”

unitShipCost (Optional) A number indicating the item’s price for
shipping. Overrides “unitShipCost” field in the
database - normally the information about the item’s
unitShipCost status is taken from a field called
“unitShipCost”. ShipTotal and GrandTotal use this
number (multiplied by quantity) to determine the total
shipping and grand total.

Header Field You may set any shopping cart header field (such as
Name, taxRate, Address1, etc.) at the same time you
add a product to the cart.

RequiredFields You may force the visitor to enter something into a
field by using the RequiredFields parameter in the
URL. Setting RequiredFields=field1+field2+field3 will
display an error message if the visitor forgets to enter
text into any of those 3 fields. RequiredFields works
for all commands, not just this one.

[ADDLINEITEM] CONTEXT
Syntax: [AddLineItem Parameters]values[/AddLineItem]

Adds a product to the specified shopping cart.

To add products to a visitor’s shopping cart, place an AddLineItem context
into a template. (Note that you may also use the Add command from a URL

 102 • WebDNA

or a FORM.) Whenever WebDNA encounters an AddLineItem context, it
opens the shopping cart file (creating a new one if necessary) and adds the
product (identified by its SKU) to the end of the LineItems in the shopping
cart. The item’s price, taxable, canEmail, and unitShipCost information is
found by looking for the values of those fields in the product database. A
different price can be used by creating a Formulas.db database. For
additional uses, see the following: Remove, Clear, ShowCart, [SetLineItem]
and Purchase.

For example: The following text is usually placed into a .tpl file on your
server and uses a web browser to link to it):

[AddLineItem cart=5678&sku=1234&db=catalog.txt]
quantity=5&textA=Red[/AddLineItem]

Note: Line items can also be added to order files not inside the
ShoppingCarts folder. By using file=/folder/folder/cartname instead of
cart=cartname, you can affect any order file in any folder. This is
most often used for “back door” administrative maintenance by
designated personnel only.

Note: A maximum of 100 line items can be added to a shopping cart.

The database “catalog.txt” opens, and sku 1234 is found. Shopping cart file
“5678” opens, and a new line item is added to the bottom of the list, with a
quantity of 5 and textA set to “Red” (as specified in the context above). The
price is taken from the database’s price field (or, if a formula for [price] is
available in Formulas.db, the price is calculated using that formula).

The parameters to the AddLineItem context are:

Parameter Description

Db Product database containing the SKU, price, and
other information.

Sku Uniquely identifies which product should be added
to the cart.

Cart Affected shopping cart file (from ShoppingCarts
folder)

File (alternative to cart) Alternate affected shopping
cart file (from any folder). Unlike cart, this file can
be in any folder. Specify the file URL-relative to

 Programmer Guide • 103

the template.

Context Values Description (values are inside the Context)

Password (Optional) In order to change the price (see
below) you must provide the line item change
password, which can be set in the preferences.

Price (Optional) Sometimes you may need to change
the price of a product while adding it to the cart.
Normally you use a formula to vary pricing, but
sometimes this alternate technique is preferred.
Remember to put the line item change password
into the parameters. There is a security risk when
using this technique, because outsiders can
change the price to anything they like.

TextA (Optional) Extra information of any kind that you
want associated with this line item. Often used to
store extra product information, such as “shoe
size” or “color.” Also used to pass catalog
database fields such as [title] through to the order
file so they may be viewed later without needing
the original database to look for the value of [title].

TextB Same as textA above.

TextC Same as textA above.

TextD Same as textA above.

TextE Same as textA above.

Quantity (Optional) Indicates how many of this SKU should
be added to the cart. This quantity is used when
calculating subtotals, unitShipCost, etc.

Taxable (Optional) “T” or “F”. Overrides “taxable” field in
the database - normally the information about the
item’s taxable status is taken from a field called
“taxable.”

CanEmail (Optional) “T” or “F”. Overrides “canEmail” field in
the database normally the information about the

 104 • WebDNA

Context Values Description (values are inside the Context)
the database - normally the information about the
item’s canEmail (electronically deliverable) status
is taken from a field called “canEmail.”

UnitShipCost (Optional) A number indicating the item’s price for
shipping. Overrides “unitShipCost” field in the
database – normally the information about the
item’s unitShipCost status is taken from a field
called “unitShipCost.” ShipTotal and GrandTotal
use this number (multiplied by quantity) to
determine the total shipping and grand total.

Header Field You may set any shopping cart header field (such
as Name, taxRate, Address1, etc.) at the same
time you add a product to the cart.

[CART] TAG
Syntax: [Cart]

Placing [Cart] in your template automatically creates a unique shopping cart
identifier that can be used in eCommerce commands such as Add, Remove,
Purchase, etc. If no cart value is specified when you arrive at a page, then a
new unique value is created. If you pass a cart value into the URL or form
(propagating the same value from page to page), then that same cart value is
used throughout the page.

[Cart] is also handy for times when you just need a guaranteed-unique value
somewhere, such as a record identifier or even a product SKU. For this
reason, [Cart] works in Typhoon as well as WebDNA.

CLEAR COMMAND
Syntax: Clear?cart=[cart]

Result: Removes all products from the specified shopping cart.

To remove all products from a visitor’s shopping cart, click a URL containing
the Clear command. Whenever WebDNA receives a Clear command, it

 Programmer Guide • 105

opens the shopping cart file and removes all LineItems from the shopping
cart. The template displayed after the Clear command can contain any
header fields from the order file (cart), and can contain a [LineItems] loop
(but of course no line items ever appear because they are all gone).

For example (normally you would link to a URL or form containing the
following information):

http://yourserver.com/xx.tpl?command=Clear&cart=5678

Shopping Cart file “5678” opens, and all line items are removed from the list.
The page sent back to the browser is xx.tpl, which typically contains a
message confirming the shopping cart is empty.

Parameters for the Clear command include:

Parameter Description

Cart Shopping cart file to be cleared

Template Template of HTML to be displayed after clearing

[CLEARLINEITEMS] TAG
Syntax: [ClearLineItems cart=cartID]

Placing [ClearLineItems] in your template will remove all line items from the
specified shopping cart. Normally carts are found inside the ShoppingCarts
folder, but you may specify a cart in any folder by using file=/folder/cartID
instead of cart=cartID.

[LINEITEMS] CONTEXT
Syntax: [lineitems]LineItem Variables[/lineitems]

Result: Loops through all the line items in an order file.

Optional Context Tags:

• [lineindex] − A number from 1 to the number of line items, indicating
this item’s index in the list.

• [sku] − The SKU of this lineitem in the shopping cart.

http://yourserver.com/xx.tpl?command=Clear&cart=5678

 106 • WebDNA

• [quantity] − Quantity of this lineitem.

• [price] − Price of this lineitem.

• [taxable] − “T” if this item is taxable, “F” if not.

• [canemail] − “T” if this item is electronically deliverable, “F” if not.

• [unitshipcost] − Price to ship one unit of this item.

• [texta] − Extra text field to be used for any purpose. Often used to
store extra product information, such as “shoe size” or “color”. Also
used to pass catalog fields such as [Title] through to the order file.

• [textb] − Used in the same way as [texta].

• [textc] − Used in the same way as [texta].

• [textd] − Used in the same way as [texta].

• [texte] − Used in the same way as [texta].

To display a list of all the line items in a shopping cart or order file, insert a
[LineItems] context into a template. This is typically in a template that
displays the results of a showCart, add, remove, or purchase command. You
may also put a [LineItems] context inside an [OrderFile] context embedded in
any page.

For example:
[lineitems]
[sku], [price], [quantity]

[/lineitems]

NEWCARTSEARCH COMMAND
Syntax: NewCartSearch?SearchParameters (Deprecated)

Searches, then creates a new, unique shopping cart token and searches a
database after substituting [cart] tags. Deprecated is no longer needed
because [cart] automatically generates a new cart number when none is
specified.

To create a new shopping cart token, send WebDNA a NewCart command
with the name of the template file you want to display.

Whenever WebDNA receives a NewCart command, it immediately creates a
unique cart number, opens the specified file, looks for and interprets any
[xxx] tags, and displays the results to the visiting web browser.

 Programmer Guide • 107

This command is obsolete and is provided for backward-compatibility only.
Instead, use an embedded [Search] context.

WebDNA’s “SmartCart” feature automatically creates a shopping cart token if
it detects a [cart] tag in any page you display without explicitly sending the
NewCart command. Consequently, simply linking to a page with [cart] tags
will work correctly.

For example, normally you would link to a URL or form containing the
following information:

http://yourserver.com/xx.tpl?command=NewCartSearch&eqNamedata=Grant

NEWCART COMMAND
Syntax: NewCart

Result: Creates a new, unique shopping cart token and displays an HTML
text file after substituting [cart] tags. Deprecated is no longer necessary
because [cart] automatically generates a new cart number when no cart is
specified.

Note: This command is no longer supported as of Version 4.0.

To create a new shopping cart token, send WebDNA a NewCart command
with the name of the template file you want to display. Whenever WebDNA
receives a NewCart command, it immediately creates a unique cart number,
opens the specified file, looks for and interprets any [xxx] tags, and displays
the results to the visiting web browser.

This command is obsolete and is provided for backward-
compatibility only. WebDNA’s “SmartCart” feature automatically
creates a shopping cart token if it detects a [cart] tag in any
page you display without explicitly sending the NewCart
command. Consequently, simply linking to a page with [cart]
tags will work correctly. For example (normally you would link to
a URL or form containing the following information):

http://yourserver.com/xx.tpl?command=NewCart

[ORDERFILE] CONTEXT
Syntax: [orderfile cart=cartID]OrderFile Tags[/orderfile] or

 [orderfile file=filepath][/orderfile]

http://yourserver.com/xx.tpl?command=NewCartSearch&eqNamedata=Grant
http://yourserver.com/xx.tpl?command=NewCart

 108 • WebDNA

Result: Displays the contents of an order file or shopping cart.

Optional Context Tags: [lineitems][/lineitems] (Loops through all the line
items in the order file / shopping cart.)

Header Tags:

• [payMethod] − Payment method chosen by customer. May be one
of: CC - Credit Card, AC - Account number (purchase order) ,FV -
First Virtual.

• [accountNum] − Account number for payment. May be credit
number, purchase order, or First Virtual account.

• [expMonth] − Month the credit card expires.

• [expYear] − Year the credit card expires.

• [email] − Email address the customer entered into the invoice page.

• [name] − Customer’s name.

• [company] − Customer’s company.

• [address1] − First address line entered by customer for shipment.

• [address2] − Second address line entered by customer for shipment.

• [city] − Customer’s city.

• [state] − Customer’s state.

• [zip] − Customer’s zip code.

• [country] − Customer’s country.

• [phone] − Customer’s phone number.

• [shipToEmail] − Ship-To email address the customer entered into
the invoice page.

• [shipToName] − Ship-To customer’s name.

• [shipToCompany] − Ship-To customer’s company.

• [shipToAddress1] − Ship-To first address line entered by customer
for shipment.

• [ShipToAddress2] − Ship-To second address line entered by
customer for shipment.

• [shipToCity] − Ship-To customer’s city.

• [shipToZip] − Ship-To customer’s state.

 Programmer Guide • 109

• [shipToCountry] − ShipTo customer’s country.

• [shipToPhone] − Ship-To customer’s phone number.

• [taxRate] − Percentage tax rate for this order, such as 7.75.

• [shipVia] − Method of delivery. May be one of: EMAIL - Electronic
delivery via email attachments, WEB - Electronic delivery via
automatically-built web pages, FedEx - Any other text can be entered
here. Has no special meaning, but can be passed through to
fulfillment emails. Maximum of 14 characters.

• [header1] − Any extra information you want to keep in the order file,
up to 255 characters.

• [header2] - [header40] − Same as header1.

Calculated Values:

• [subTotal] − Total of the quantity * price for all the lineitems.

• [taxableTotal] − Total of the quantity * price for line items whose
taxable field is set to true (“T”).

• [taxTotal] − TaxableTotal * taxRate defined in the header.

• [shipTotal] − Total of the unitShip cost * quantity for all line items
plus the baseShipCost.

• [grandTotal] − Total cost for the order: includes tax and shipping.

To display the contents of an order file (either a shopping cart or a completed
order), insert an [orderfile] context into the template. You may insert a
[LineItems] context inside the [OrderFile] context to display each of the line
items (products) in the order file. Since the [OrderFile] . . . [/OrderFile]
context can specify a file by either the its path or its [Cart] number, it can be
used in place of the ShowPage command.

For example:
[orderfile Orders/-13490876]
Name: [name]

Address: [address1]

[address2]

Grand Total: [grandTotal]
[/orderfile]

 110 • WebDNA

[PURCHASE] TAG
Syntax: [Purchase cart=cartID]

Placing [Purchase cart=cartID] in your template moves the specified
shopping cart file from the ShoppingCarts folder to the Orders folder,
effectively the same as a Purchase command. If the cart file is not in a
ShoppingCarts folder, you may use the alternate file=/folder/cartID instead of
cart=cartID.

PURCHASE COMMAND
Syntax: Purchase?db=xx.db&cart=123&options=xx

Result: Submits a shopping cart for final order processing.

To purchase a shopping cart full of items, send WebDNA a Purchase
command. WebDNA verifies the checksum of the credit card (if paying by
credit card), sets any quantities, taxRates, or other order file header
variables, and moves the order file from the Shopping Cart folder to the
Orders folder. The template displayed is usually a “Thank You” template,
which can contain [Email] contexts to send order verification and fulfillment
requests to people in your company. The “Thank You” template can also
contain any header variables from the cart, as well as a [LineItems] context
so you can display final grand totals and other verification of the items
purchased.

WebDNA performs credit card validation or fulfillment of the order if you are
using the WebMerchant feature. WebDNA performs a simple check of the
credit card number to see if it is a reasonable number, but it does not verify
funds.

For example (normally you would put the following text into a .tpl file on your
server and use a web browser to link to it):

http://www.yourserver.com/GeneralStore/ThankYou.tpl?command=Purchase&db
=xx.db&cart=123

Note: As a rule, all database file paths are relative to the local template, or if
they begin with “/,” they are relative to the web server’s virtual host root. You
may optionally put “^” in front of the file path to indicate the file can be found
in a global root folder called “Globals” inside the WebCatalogEngine folder.
This global root folder is the same regardless of the virtual host.

http://www.yourserver.com/GeneralStore/ThankYou.tpl?command=Purchase&db=xx.db&cart=123
http://www.yourserver.com/GeneralStore/ThankYou.tpl?command=Purchase&db=xx.db&cart=123

 Programmer Guide • 111

You may set any of the following variables during a Purchase command by
placing named form variables into the purchase form. Some are optional, and
any you do not explicitly set will remain unchanged from their previous values
obtained from Add or ShowCart commands.

Parameter Description

Template (Required) The template displaying the “Thank
You” page after the purchase command
completes. If you are using suffix mapping, then
the template is simply the URL of the “Thank You”
page.

db (Required) Product Database use for looking up
product [xxx] fields inside the [LineItems] loop.

Cart (Required) Name of the shopping cart file to be
purchased.

PayMethod (Required) Payment method chosen by customer.
May be one of the following:

.

.

.

.

CC - Credit Card (WebDNA performs a
checksum to make sure the number is
reasonable)

AC - Account number (purchase order)
(WebDNA performs no validation, but
WebMerchant Account Authorizer later does
custom authorization)

BK - Book this order (verify funds, but do not
deposit money). Handled by WebMerchant

SH - Ship this order (only from a previous
BK order. Deposits money that was verified
earlier). Handled by WebMerchant

AccountNum (Required) Account number for payment. May be
credit card number, purchase order, or First
Virtual account.

ExpMonth (Required for credit cards) Month the credit card
expires (between 1 and 12).

 112 • WebDNA

Parameter Description

ExpYear (Required for credit cards) Year the credit card
expires.

Optional Parameters Description

Card (Optional) If you only accept certain types of credit
card, then set this to a list of card names you accept.
For example: VISA+MC will accept VISA and
MasterCard, but no others. You may choose from
VISA, MC, AMEX, DISC, JCB, CB, DINER, ALL,
IGNORE.

.

.

ALL - means accept all cards listed above (if
checksum is correct)

IGNORE - means accept any number,
regardless of checksum.

Email Bill-To: Email address the customer entered into the
invoice page. Limited to 99 characters.

Name Bill-To: Customer’s name. Limited to 99 characters.

Company Bill-To: Customer’s company. Limited to 99
characters.

Address1 Bill-To: First address line entered by customer for
shipment. Limited to 99 characters.

Address2 Bill-To: Second address line entered by customer for
shipment. Limited to 99 characters.

City Bill-To: Customer’s city. Limited to 49 characters.

State Bill-To: Customer’s state. Limited to 49 characters.

Zip Bill-To: Customer’s zip code. Limited to 19
characters.

Optional Parameters Description

 Programmer Guide • 113

Country Bill-To: Customer’s country. Limited to 49 characters.

Phone Bill-To: Customer’s phone number. Limited to 24
characters.

ShipToEmail Ship-To: Email address the customer entered into the
invoice page. Limited to 99 characters.

ShipToName Ship-To: Customer’s name. Limited to 99 characters.

ShipToCompany Ship-To: Customer’s company. Limited to 99
characters.

ShipToAddress1 Ship-To: First address line entered by customer for
shipment. Limited to 99 characters.

ShipToAddress2 Ship-To: Second address line entered by customer
for shipment. Limited to 99 characters.

ShipToCity Ship-To: Customer’s city. Limited to 49 characters.

ShipToZip Ship-To: Customer’s zip code. Limited to 19
characters.

ShipToState Ship-To: Customer’s state. Limited to 19 characters.

ShipToCountry ShipTo: Customer’s country. Limited to 49
characters.

ShipToPhone Ship-To: Customer’s phone number. Limited to 24
characters.

TaxRate Percentage tax rate for this order, such as 7.75.

ShipVia Method of
delivery.

May be one of:

EMAIL - Electronic delivery via email attachments

WEB - Electronic delivery via automatically-built web
pages

FedEx - Any other text can be entered here. Has no
special meaning, but can be passed through to

 114 • WebDNA

Optional Parameters Description

fulfillment emails. Maximum of 63 characters.

header1 Any extra information you want to keep in the order
file, up to 255 characters.

header2 - header40 Same as header1.

NonTaxableTotal Normally this value is computed automatically, but if
you explicitly set its value, you can ‘override’ the pre-
computed value with any new number you like.
WebMerchant displays this value if it is explicitly set,
otherwise it computes it from the numbers provided in
the order file.

TaxableTotal Similar to nonTaxableTotal.

TaxTotal Similar to nonTaxableTotal.

ShippingTotal Similar to nonTaxableTotal.

SubTotal Calculated: based on taxableTotal +
nonTaxableTotal. This cannot be overridden directly;
if you want to override the subTotal of an order, you
must override both taxableTotal and nonTaxableTotal
to force the calculation of subTotal to become a new
value.

CartIPAddress This is not pre-set automatically, but you can set it to
[ipAddress] if you want to remember the IP address
of the visitor who last used the cart. Limited to 15
characters.

CartUsername You can store the user name of the person who last
used this cart here. It is not set automatically. Limited
to 63 characters.

CartPassword You can store the password of the person who last
used this cart here. It is not set automatically. Limited
to 63 characters.

Precision International support: number of digits after the
decimal that are considered important for tax,

Optional Parameters Description

 Programmer Guide • 115

subtotal, grandtotal calculations. In the U.S., 2 digits
are the normal precision. For Japan, 0 causes all
calculations to round off at integer values. You can
change this on a cart-by-cart basis with [SetHeader]

TaxableShipping If set to T, causes shipping to be taxed. The tax and
grand total are increased by
[taxRate]*[shippingTotal]. Default value is F.

AuthNumber WebMerchant Only: Text authorization ticket#
returned from bank network. WebMerchant fills in this
field after calling the bank. Limited to 63 characters.

ResponseText WebMerchant Only: Response text returned from
bank network. WebMerchant fills in this field after
calling the bank. Limited to 149 characters.

Status WebMerchant Only: status of order, such as
Approved/Hold/Call/Pending. WebMerchant fills in
this field after calling the bank. Limited to 63
characters.

BatchNumber WebMerchant Only: Batch# that
PCAuthorize/MacAuthorize has stored this order in.
WebMerchant fills in this field after calling the bank.
Limited to 63 characters.

ReferenceNumber WebMerchant Only: Reference# that
PCAuthorize/MacAuthorize created for this order.
WebMerchant fills in this field after calling the bank.
Limited to 63 characters.

SequenceNumber WebMerchant Only: Sequence# that
PCAuthorize/MacAuthorize created for this order.
WebMerchant fills in this field after calling the bank.
Limited to 63 characters.

ItemNumber WebMerchant Only: Item# (within the batch) that
PCAuthorize/MacAuthorize created for this order.
WebMerchant fills in this field after calling the bank.
Limited to 63 characters.

 116 • WebDNA

Optional Parameters Description

RequiredFields You may force the visitor to enter something into a
field by using the RequiredFields parameter in the
URL. Setting RequiredFields=field1+field2+field3
displays an error message if the visitor forgets to
enter text into any of those 3 fields. RequiredFields
works for all commands, not just this one.

Line Item Variables Description

quantity[lineIndex] You may optionally set the quantity (to be
purchased) of any line item. For example:
quantity1=12 sets the first line item’s quantity
to 12. Similarly, quantity5=3 sets the fifth line
item’s quantity to 3 (these quantities can also
be set with a Add or ShowCart command)

textA[lineIndex] Any extra text you wish to associate with this
line item. Sometimes used to store size, color,
or pass catalog fields through to the shopping
cart (can also be set with Add or ShowCart
command). Limited to 255 characters.

textB[lineIndex] Similar to textA.

textC[lineIndex] Similar to textA.

textD[lineIndex] Similar to textA.

textE[lineIndex] Similar to textA.

taxable[lineIndex] You are not allowed to set this value. It comes
from the product database field “taxable,” or
from the taxable formula in Formulas.db.

canEmail[lineIndex] Similar to taxable unitShipCost[lineIndex]. To
prevent “hacking” this value cannot be set
remotely—its value either comes from the
product database field “unitShipCost”, or is
computed from a formula stored in
Formulas.db.

 Programmer Guide • 117

unitShipCost[lineIndex]

To prevent "hacking" this value cannot be set
remotely -- its value either comes from the
product database field "unitShipCost", or is
computed from a formula stored in
Formulas.db.

price[lineIndex] Similar to unitShipCost.

[REMOVELINEITEM] TAG
Syntax: [RemoveLineItem cart=cartID&index=3]

Placing [RemoveLineItem] in your template immediately deletes the specified
line item from the specified shopping cart file. Alternately, you may use the
Remove command. See also [AddLineItem] and Add. If the cart file is not in a
ShoppingCarts folder, you may use the alternate form file=/folder/cartID
instead of cart=cartID.

REMOVE COMMAND
Syntax: Remove?db=DatabaseName&cart=[cart]&sku=xx

Removes a product from the specified shopping cart.

To remove products from a visitor’s shopping cart, click a URL containing the
Remove command. Whenever WebDNA receives a Remove command, it
opens the shopping cart file and removes the product (identified by its SKU)
from the LineItems in the shopping cart. Also see Add, Clear, ShowCart, and
Purchase.

For example, normally you would link to a URL or form containing the
following information:

http://yourserver.com/xx.tpl?command=Remove&db=SomeDatabase.db&sku=12
34&cart=5678

Shopping Cart file “5678” opens, and the first line item found with the correct
SKU is deleted. The page sent back to the browser will be xx.tpl, which
typically contains a [LineItems] loop to display the current items in the cart
(after the removal).

Here are the parameters to the Remove command:

http://yourserver.com/xx.tpl?command=Remove&db=SomeDatabase.db&sku=1234&cart=5678
http://yourserver.com/xx.tpl?command=Remove&db=SomeDatabase.db&sku=1234&cart=5678

 118 • WebDNA

Parameter Description

db Product database containing the SKU, price, and other
information

sku Uniquely identifies the product to remove from the cart

cart Affected shopping cart file

template Template of HTML displayed after the sku is removed
from the cart. Typically this is the same shopping cart
template used for adding items to the cart—so the visitor
can see the item has been removed.

[SETHEADER] CONTEXT
Syntax: [setheader cart=cartID&index=x]line item values[/setheader]

Result: Changes a line item in a shopping cart.

Required Tag Parameters:

• db=databasepath − URL-style path to the product database.

• index =number − Uniquely identifies which line item should be
modified.

• cart=cartID − Shopping cart file (from shopping carts folder) that is to
be affected.

or

file=filepath − URL-style path to the shopping cart or order file that is
to be affected. Unlike cart, this file can be in any folder.

Optional Context Parameters:

• Email=text − Email address of the person ordering.

• PayMethod=”CC” or “AC” or “FV” − CC = Credit Card, AC =
Account, FV = First Virtual (Pending Order).

• AccountNum=text − Credit card number, account number, First
Virtual PIN etc.

• ExpMonth=number − 1=January, 2=February and so on.

 Programmer Guide • 119

• ExpYear=number − Either two digit (normally) or 4 digit year.
Depends upon your credit card clearing software.

• TaxRate=number − Decimal value like .07 = 7% tax.

• Name=text − Name of person ordering.

• Company=text − Company of person ordering.

• Address1=text − First address line of person ordering.

• Address2=text − Second address line of person ordering.

• City=text − City of person ordering.

• State=text − State of person ordering.

• Zip=text − Zip code of person ordering.

• Phone=text − Phone number of person ordering.

• ShipVia=text − Shipping method like “Ground”.

• ShipCost=number − Costing of shipping chosen in ShipVia.

• Country=text − Country of person ordering.

• ShipToEmail=text − Email address of the person receiving the
product.

• ShipToName=text − Name of the person receiving the product.

• ShipToCompany=text − Company name of the person (company)
receiving the product.

• ShipToAddress1=text − First address of the person receiving the
product.

• ShipToAddress2=text − Second address of the person receiving the
product.

• ShipToCity=text − City of the person receiving the product.

• ShipToState=text − State of the person receiving the product.

• ShipToZip=text − Zip code of the person receiving the product.

• ShipToCountry=text − Country of the person receiving the product.

• ShipToPhone=text − Phone number of the person receiving the
product.

• Header1 - Header40=text − Miscellaneous header fields where you
can store information.

 120 • WebDNA

Although many of the header fields have specific names (e.g.,
“ShipToCompany”) you may use them for whatever data you wish. However,
if you are using WebMerchant, some of the header fields must contain proper
information. Those fields are in bold. You may also set header fields when
conducting a SetLineItem or Purchase. Use SetLineItem to set the line item
values in a shopping cart.

[SETLINEITEM] CONTEXT
Syntax: [setlineitem cart=cartID&index=x]line item values[/setlineitem]

Result: Changes a line item in a shopping cart.

Required Tag Parameters:

• db=databasepath − URL-style path to the product database.

• index =number − Uniquely identifies which line item should be
modified.

• cart=cartID − Shopping cart file (from shopping carts folder) that is to
be affected.

or

file=filepath − URL-style path to the shopping cart or order file that is
to be affected. Unlike cart, this file can be in any folder.

Optional Context Parameters:

• textA=value − Extra information of any kind that you want associated
with this line item. Often used to store extra product information, such
as “shoe size” or “color”. Also used to pass catalog database fields
such as [Title] through to the order file.

• textB=value − Same as textA above.

• textC=value − Same as textA above.

• textD=value − Same as textA above.

• textE=value − Same as textA above.

• quantity=number − Tells how many of this SKU should be added for
this line item. This quantity is used when calculating totals,
unitShipCost, etc.

 Programmer Guide • 121

• taxable=Boolean − “T” or “F”. Overrides taxable field in the database
- normally the information about the item’s taxable status is taken
from a field called taxable.

• canEmail=Boolean − “T” or “F”. Overrides canEmail field in the
database - normally the information about the item’s canEmail
(electronically deliverable) status is taken from a field called
canEmail.

• unitShipCost=number − A number indicating the item’s price for
shipping. Overrides unitShipCost field in the database - normally the
information about the item’s unitShipCost status is taken from a field
called unitShipCost. ShipTotal and GrandTotal use this number
(multiplied by quantity) to determine the total shipping and grand total.

 122 • WebDNA

SHOWCART COMMAND
Syntax: ShowCart?db=xx.db&template=xx.tpl&cart=[cart]&options=xx

Displays/Modifies the contents of a shopping cart order file.

To display a shopping cart full of items (or update some header or line item
information in the cart), send WebDNA a ShowCart command. WebDNA
looks for any new values of header fields in the form and sets the
corresponding fields in the cart. It also looks for any numbered line item
information, such as “quantity3=39” and modifies the corresponding line item
values in the cart. See Purchase and Add.

For example, normally you would put the following text into a .tpl file on your
server and use a web browser to link to it:

http://www.yourserver.com/WebDNA/ShoppingCart.tpl?command=ShowCart&car
t=123&db=catalog.txt

You may set any of the same variables as with a Purchase command by
putting named form variables into the form. Some are optional, and any you
do not explicitly set remain unchanged from their previous values obtained
from Add or ShowCart commands.

Any formulas you defined will be applied and calculated before showing the
contents of the cart.

Note: You may force the visitor to enter something into a field by using the
RequiredFields parameter in the URL. Setting
RequiredFields=field1+field2+field3 displays an error message if the visitor
forgets to enter text into any of those 3 fields. RequiredFields works for all
commands, not just ShowCart.

In addition to the values you may set when displaying the cart, you may also
display the following pre-calculated values:

Value Description

GrandTotal Calculated final purchase cost, based
on price of all lineitems, quantities,
base shipping cost, unit shipping cost,
and taxRate.

SubTotal Total cost of all items, before shipping
and tax

http://www.yourserver.com/WebCatalog/ShoppingCart.tpl?command=ShowCart&cart=123&db=catalog.txt
http://www.yourserver.com/WebCatalog/ShoppingCart.tpl?command=ShowCart&cart=123&db=catalog.txt

Value Description

 Programmer Guide • 123

and tax

TaxableTotal Total cost of all items that are marked
as taxable

TaxTotal Tax on taxable items

ShippingTotal Total cost of shipping based on
unitShipCost of all items and base
shipping charge.

NumLineItems Number of line items in the order

[VALIDCARD] TAG
Syntax: [ValidCard accountNum=cardNumber&card=VISA+MC]

Placing [ValidCard] into a template displays “T” or “F” (True or False),
depending on the value of the number in accountNum. If the accountNum is
a reasonable credit card number for the specified bank network, then “T”
indicates it is good. Conversely, “F” indicates it is bad. This does not call the
bank to verify funds on the card—it merely does a simple numeric checksum
to verify the number is consistent with a credit card number.

Parameters Description
accountNum (Required) The credit card number. Any extra spaces or

non-numeric characters will be ignored.
 card (Optional) Set card to the names of the credit cards that

are allowed, separated by space or +. Possible values
are ALL, IGNORE, VISA, MC, AMEX, DISC, JCB,
DINER. If not specified, then ALL cards are allowed.
IGNORE tells it to always validate the card regardless of
its checksum.

 124 • WebDNA

Showing and Hiding

[HIDEIF] CONTEXT
Syntax: [hideif comparison]Hide This HTML[/hideif]

Result: Hides HTML conditionally only if the comparison is true.

Required Tag Parameter: comparison (a comparison checks two pieces of
text separated by a comparison operator)

The comparison is separated from the hideif in the beginning tag with a
single space character. All other characters, including space characters, are
considered part of the comparison. The characters representing the
comparison operators are not valid in the text being compared.

Review the following table:
Comparison

Type

Character

Example

equal =’ [hideif [username]=SAGEHEN]

not equal ‘!’ [hideif [random]!45]

contains ‘^’ [hideif [browsername]^Mozilla]

begins with ‘~’ [hideif [ipaddress]~245.078.013]

less than <’ [hideif [random]<50]

greater than ‘>’ [hideif [lastrandom]>25]

If both side of the comparison are numbers, then the comparison for greater
than, less than and equal is performed numerically. If either side is not a
number, then the comparison is performed alphabetically.

To hide selected HTML (or [xxx] tags) only if certain conditions are met,
insert the text inside a [hideif] container. The comparison, which may contain
any [xxx] tags, is first evaluated to see if it is true, and if true then the
contained text is hidden. If not true, then any text or [xxx] tags inside the
container is displayed. See [ShowIf].

 Programmer Guide • 125

[hideif] functions appropriately when it hides its container: any contexts inside
the [hideif] container (e.g. [append] or [replace] or [delete]) are not executed
if [hideif] evaluates as “true.” A context must be completely enclosed within a
single [hideif] context in order for it to be properly hidden. For example, you
can’t have two [hideif] contexts that hide the beginning and ending tags for
the [appendfile] context.

For example:
[hideif [username]=Grant]
[authenticate user Grant]
[/hideif]

[HTML1] CONTEXT
Syntax: [HTML1]Text for HTML 1 Browsers[/HTML1]

Result: Displays enclosed text only if the browser supports HTML 1 as
defined in your Browser Info.txt file.

This context is used to display HTML and text only to older browsers that are
listed in the Browser Info.txt file as belonging to this category.

For example:
[HTML1]
Any text that you want to be seen only
by older browsers that do not support tables or frames
[/HTML1]

In the example above, the displayed text is only the text you want to be seen
by older browsers that do not support tables or frames (i.e., Netscape 1.0 or
other non-table-aware browsers such as Lynx). You control which browsers
see the HTML1 context by editing the Browser Info.txt file.

Both this and the following two contexts define how you can display different
results to different browsers using a single template. Although we have
named them after the three current levels of HTML, they offer more flexibility
than simply displaying results fitting the definitions of HTML. By changing the
three fields defined in the Browser Info.txt file, you can set these three
contexts to display results based on any conditions you choose.

[HTML2] CONTEXT
See HTML1 Context.

 126 • WebDNA

[HTML3] CONTEXT
See HTML1 Context.

[IF][THEN][ELSE] CONTEXT

Syntax: [If Expressions][Then]do this[/Then][Else]otherwise this[/Else][/If]

Result: Displays HTML or executes WebDNA conditionally only if the
expression is true.

To display HTML (or execute WebDNA [xxx] tags) only if certain conditions
are met, place the text inside an [If] context. The comparison, which may
contain any [xxx] tags, is first evaluated to see if it is true, and if true then the
contained [Then] context is executed (or simply displayed, if it’s just HTML).
If not true, then the contained [Else] context is executed (or simply displayed,
if it’s just HTML). See [Then] and [Else].

Example (normally you would put the following text into a .tpl file on your
server and use a web browser to link to it):

 [If ((“[username]”=”Grant”) | ([grandTotal]<100)) &
 ({[date]}<{2/15/2000})]
 [Then]either username was Grant or grandTotal was < $100 and it’s not
 Feb 15, 2000 yet[/Then]
 [Else]The complex expression wasn’t true[/Else]
 [/If]

Comparisons are always case-insensitive so “grant” equals “GRANT”. The
expression is evaluated as a mathematical Boolean equation, where each
sub-expression evaluates to either 0 or 1 (meaning true or false). If the entire
evaluated expression is true, then the WebDNA inside the [Then] context is
executed; otherwise, the [Else] context is executed. The [Math] context has
been extended to allow for quoted text and Boolean operators, and is
actually what is used by [If] to perform the work of evaluating the expression.
A side-effect of this allows you to use these operators inside a [math]
equation: [math]1<3[/math] evaluates to “1”, because the equation is true.
Conversely, [math]3<1[/math] evaluates to “0” because the equation is false.
Similarly, [math]1&1[/math] evaluates to “1”, and [math]1&0[/math] evaluates
to “0”.

 Programmer Guide • 127

Comparison Example

Equal = [If “[username]” = “SAGEHEN”] variable
[username] is equal to SAGEHEN

not equal ! [If [random] ! 45] random number is not 45

contains ^ [If “[browsername]” ^ “Mozilla”] variable
[browsername] contains the text Mozilla

begins with ~ [If "[ipaddress]" ~ "245.078.013"] variable
[ipaddress] begins with 245.078.013
Notice the IP address has been typed with 3
digits in each portion of the address. This is
very important for making these comparisons
work as expected.

less than < [If [random] < 50] random number is less than
50

greater than > [If [lastrandom] > 25] last random number is
greater than 25

divisible by \ [If [index] \ 3] variable [index] is divisible by 3

or | [If (5>4) | (1<3)] Boolean comparison: if either
side of the operator is true, then the comparison
is true

and & [If (5>4) & (1<3)] Boolean comparison: if both
sides of the operator are true, then the
comparison is true

Delimiter Example

Quoted Text ".." [If "Hello" ^ "hell"] All text must be surrounded
by quotes

 128 • WebDNA

Delimiter Example

Numbers [If 12.5 < 13.2] Numbers do not need to be
delimited; they function the same as in a [Math]
context

Dates { } [If {[date]} > {9/7/1963}] Dates must be enclosed
in curly braces to distinguish them from regular
numbers

Times { } [If {[time]} > {12:31:00PM} Times must be
enclosed in curly braces to distinguish them
from regular numbers

Parentheses (..) [If (3>1) & ("a"<"b")] You may collect groups of
items in parentheses in order to force the order
of evaluation

[SHOWIF] CONTEXT
Syntax: [showif comparison]Show This HTML[/showif]

Result: Displays HTML conditionally only if the comparison is true.

For example:
[showif [username]=Grant]You’re allowed in![/showif]

See [HideIf] for an explanation of comparison.

[SWITCH][CASE] CONTEXT

Syntax: [Switch Value]Series of [Case]...[/Case]contexts[/Switch]

Result: Executes the WebDNA inside the only [Case] context, which
matches the given value.

To display HTML (or execute some WebDNA) from a list of known text
options, put the text value inside a [Switch] context. For each possible option,
put a [Case] context inside the [Switch]. You may optionally specify a default
case by inserting a [Default] context. The [Default] context must be the very
last context inside the [Switch].

 Programmer Guide • 129

For example, normally you would put the following text into a .tpl file on your
server and use a web browser to link to it):

 [text]x=5[/text]
 [Switch value=[x]]
 [Case value=1]
 The value of x was 1
 [/Case]
 [Case value=2]
 The value of x was 2
 [/Case]
 [Default]
 The value of x was neither 1 nor 2; it was [x]
 [/Default]
 [/Switch]
 [text]title=Mrs[/text]
 [Switch value=[title]]
 [Case value=Mr]
 You’re a male
 [/Case]
 [Case value=Mrs]
 You’re a female
 [/Case]
 [/Switch]

In the first example above, the text “The value of x was neither 1 nor 2; it was
5” will display, because the two cases for “1” and “2” did not match the actual
value of x, which was “5.” In the second example above, the text “You’re a
female” will display. Any WebDNA inside the other [Case] contexts will not
execute, and any text inside those contexts will not display.

Note: The values are compared as case-insensitive text only. This means
the number “1.0” is not the same as the number “1” when determining which
of the [Case] contexts to execute.

SHOWPAGE COMMAND
Syntax: ShowPage

Result: Displays an HTML text file after substituting [xxx] tags for their real
values.

Note: This command will be supported through version 4.0. It will be
eliminated in version 5.0.

 130 • WebDNA

To display an HTML file, send WebDNA a ShowPage command with the
name of the template file you want to display. Whenever WebDNA receives a
ShowPage command, it immediately opens the specified file, looks for and
interprets any [xxx] tags, and displays the results to the visiting web browser.

If you have defined an ACTION telling your web server to send all files of a
certain extension (.tpl, .HTML) to WebDNA, then simply linking to a URL with
that file extension automatically informs WebDNA to perform a ShowPage on
that template.

For example (normally you would link to a URL or form containing the
following information):

http://yourserver.com/xx.tpl?command=ShowPage

Other ways to send the same command include:

HTML Source Description
 Hyperlink to WebDNA (notice

that when suffix-mapping for
.tpl files is set to WebDNA’s
plug-in, WebDNA assumes all
.tpl files should be displayed
with the ShowPage
command). You can set suffix
mapping for .html, and then
all files will be sent through
WebDNA’s interpreter.

<form method=”POST” action=”xx.tpl”>
</form> Form-based command

(notice the template is part of
the action, and ShowPage is
automatic)

Security Note 1: Files inside your cgi-bin (or Scripts) directory cannot be
displayed from a remote browser unless you explicitly create an extension
mapping telling WebDNA to process them. This prevents outsiders from
downloading order files or shopping cart files that contain sensitive
information.

http://yourserver.com/xx.tpl?command=ShowPage

 Programmer Guide • 131

Security Note 2: Files whose type is ‘WWWO’ (where the O is the Macintosh
character option-Z) will not be displayed. These files are considered to
contain sensitive information that should never be shown to an outside user.
WebDNA automatically creates files with this type in order to prevent hackers
from downloading your sensitive data.

Dates and Times

[DATE] TAG
Syntax: [Date format=MM/DD/YYYY]

Placing [Date] in your template displays the current date as defined by the
clock on your web server. Though the format of the date is normally
MM/DD/YYYY, you can change the default format by changing the
DateFormat preference. To override the default date format preference on a
case-by-case basis you can specify a format inside the tag, as in [DATE
%m/%d/%Y]. See [Time].

Note: The [Date] tag is sometimes confused with the [OrderFile]’s [Date] tag,
which is not the same thing. The [Date] tag inside the context of an
[OrderFile] represents the date the order was created, and does not have the
ability to be formatted in special ways. If you want to display today’s date
inside of an [OrderFile], then you must first assign a text variable outside the
OrderFile context, and use that text variable from then on.

The valid date formats are:

Format Description
%a Abbreviated weekday name “Wed” *

%A Full weekday name “Wednesday” *

%b Abbreviated month name “Feb” *

%B Full month name “February” *

%c Date and time in the form Wed Sep 19 18:24:21 1997 *

%d Day of month 01-31

%H Hour 00-23

%I Hour 01-12

 132 • WebDNA

Format Description
%j Day of year 001-365

%m Month 01-12

%M Minute 00-59

%p AM or PM

%S Seconds 00-59

%U Week # of year (where Sunday is first day of week) *

%w Weekday 0 (Sunday) - 6 (Saturday)

%W Week # of year (where Monday is first day of week) *

%x Date as Sep 11 1997 *

%X Time as 14:01:12

%y Year without century 00-99

%Y Year with century 1900-2199. Note: on Linux systems, years earlier
than 999 will not display 4 digits for the year.

%Z Time zone of server

%% %

* These items depend on the underlying operating system’s Y2K-
compliance. Windows NT, for instance, will not display correct day-
of-week-name results for years past 2039. The workaround is to use
%w (weekday as a number) and perform your own lookup in a small
database for the textual name of the weekday.

[FORMAT] CONTEXT
Syntax: [Format formatspec]Text or Number[/format]

Result: Formats text or numbers in various widths, lengths, or currency
formats.

To display numbers and text with various lengths, decimal points, or currency
formats, surround the number or text with a [Format] context.

For example:
-[Format 10.2f]99.5[/Format]-
-[Format 14s]Hello, my name is John.[/Format]-
-[Format thousands .2f]394363210[/Format]-

 Programmer Guide • 133

-[Format thousands ,2f]394363210[/Format]-
-[Format thousands .0f]394363210[/Format]-

Numbers are displayed right justified with enough preceding spaces and
digits after the decimal point to fill the exact width of the format specifier.
However, most browsers ignore preceding spaces unless you a <pre> tag or
similar method to display them is used. Text is left justified with enough
spaces after it to exactly fill the width specifier. In the preceding examples,
the hyphen character ‘-‘ is used to show the resulting widths of the text
displayed.

The results are:
- 99.50-
-Hello, my name-
-394,363,210.00-
-394.363.210,00-
-394,363,210-

The “f” specifier represents the floating-point number. Use this specifier to
format numbers of any type. Numbers can be forced to a certain overall width
and/or a certain number of characters after the decimal point. In addition, you
can output numbers with commas (US style) or periods (European style) as
separators using the thousands modifier before the format specifier.

Given a number 345.67, the following format specifiers will display as shown:
 8.3f = - 345.670-
 8.2f = - 345.67-
 8.1f = - 345.7- (notice rounding from .67 to .7)
 .1f = -345.7-

The “s” specifier for strings is very useful for truncating long strings so they
may be used in a synopsis (or lengthening short strings to fit some
preformatted text. The “s” specifier must have a number in front of it
specifying the width the text should be returned at (maximum length is 255).
If your database contained technical support information in sentences or
paragraphs, you might insert [format 20s][solutiontext][/format] so that the
first listing displays a short text snippet that could then be linked to the full
detail record of the solution.

Dates and Times

For example:
[format days_to_date %d/%m/%Y]12/8/98[/format]
[format seconds_to_time %H:%M]8:53:12[/format]
[format days_to_date %d][math]{12/8/65}+10[/math][/format]
[format seconds_to_time %M][math]{10:53}-{10:45}[/math]

 134 • WebDNA

[/format]

You can also use the [format] context to format dates and time, or, perhaps
more important, retrieve specific components of a date or time. Since the
[math] context returns the results of any date operations as the number of
days since 00/00/0000, and the results of any time operations as the number
of seconds since midnight, the two format specifiers for [format] are
days_to_date and seconds_to_date. After the specifier, use the ANSI-like
formatting options described in the [time] and [date] tag sections to format
the output.

The results of the examples above are:

8/12/1998 − Reformats from US-style dates to European-style dates.

8:53 − Truncates the time so it only displays hours and minutes.

8 − Returns the day value that’s the result of the addition.

8 − Returns the number of minutes in the difference.

[MATH] CONTEXT
Syntax: [math]Equation[/math]

Result: Calculates the enclosed numerical, date, or time equation and
displays the results.

Optional Tag Parameters:

• date − Displays the results of the calculations using the default date
format in your preferences.

• time − Displays the results of the calculations using the default time
format in your preferences.

• show − Possible values are “T” (true) or “F” (false) to display or
suppress the results from appearing on the page.

Optional Context Parameters:

• {date} − Dates need to be enclosed in curly braces so they are not
mistaken for multiple division expressions.

• {time} − Times, like dates, need to be enclosed in curly braces so
they are not mistaken for numbers. Example: {11:23:56}.

 Programmer Guide • 135

• +,-,*,/,%,^ − All the standard math operators are supported.

• (expression) − Any math expression, including those involving dates
and time can be enclosed in parentheses to force evaluation in a
certain order.

• variable=expression − The [Math] context may be used to set and
reset variables. Variables can have any text name. Their value is
displayed by placing the variable name in square brackets.

To calculate a mathematical equation, put it inside a Math context. You can
insert any [xxx] variables inside the context. Dates and times can also be
calculated. To distinguish dates and times from plain numbers, put them
inside curly-braces: {12/01/1997}. You cannot mix both dates and times in
one equation.

You may also create up to 150 math variables by name. These named
variables can be used in any other [Math] context in the template:
[Math]fred=12/7.5[/Math] ...other text here...[Math]fred/15.2[/Math]. Note that
the name of a math variable is limited to 15 characters in length and must
begin with a letter followed by up to 14 letters or numbers. Only the letters a-
z and A-Z are allowed.

For example:
[math](4.5+6.2)/17*95-12[/math]
[math]{4/7/1997}+10[/math]
[math]{4/7/1997}+{02/00/0000}[/math]
[math date]{4/7/1997}+10[/math]
[math date]{4/7/1997}+{02/00/0000}[/math]
[math date]{[date]}-{00/07/0000}[/math]
[Math]{12:51:02}[/Math]
[Math time]{12:51:02}+{01:00:05}[/Math]
[Math]x=5/3[/Math]
[Math]x=5%3[/Math] (% = Modulo Operator)
[Math show=F]xyz=5/3[/Math]
[Math]xyz[/Math]
[xyz] (3.0)

The resulting text displayed is:
47.7941176470588
729496 (4/7/1997 + 10 days expressed as number of days since

00/00/0000 (AD))
729547 (4/7/1997 + 2 months expressed as days since

00/00/0000)

 136 • WebDNA

04/17/1997 (4/07/1997 + 10 days expressed as date)
06/07/1997 (4/17/1997 + 2 months expressed as date)
03/30/1997 (One week ago today)
46262 (number of seconds between midnight and 12:51:02

expressed as seconds)
13:51:07 (12:51:02 pm plus 1 hour and 5 seconds expressed as

time)
1.66666666666667
2
(no output) show=F means not to display the results of the

equation
1.66666666666667 (simply naming a math variable inside a

math context displays its value)
1.66666666666667 (simply naming a math variable like [x]

displays its value)

Any [xxx] variables are first evaluated and replaced with their real values,
then the resulting equation is calculated. The final numerical result is
displayed. Standard algebraic order of operations are followed when
evaluating expressions. Use parentheses to clarify or force a specific order of
operations.

For example:
[lineitems]
[sku], [title], [description], [price], [math]([price]+[unitShipCost])*[quantity][/math]
[/lineitems]

Dates
Dates may be included in mathematical expressions by enclosing the date in
braces (‘{’ and ‘}’). You may easily add or subtract days, months, or years
from dates by expressing them as a complete date. Use 0 (zero) for values to
be ignored. For example, in order to add 2 months to today’s date you would
write an expression like: [math]{[date]}+{2/0/0000}[/math].

Keep the following in mind when using dates:

• It is a good idea to group math expressions involving dates together
using parentheses.

• The year must be expressed as 4 digits so that 2-digit years can be
converted to their proper value (i.e. 96 is really 1996, and 00 is 2000).

• When using dates mixed with integers, the final result is a value
representing a number of days (i.e. {12/8/97}+10 adds 10 days to the
date). In fact, the result of a math expression with dates is always the
number of days. To display the output of the math expression as a

 Programmer Guide • 137

date, add the Date modifier to the [Math] context: [Math
Date]...[/Math].

• Non-American Dates (as of 3.0.3): Some countries specify
dates with decimal points, as in {10.1.1998}, but WebDNA will
interpret this as a time instead. You can force it to interpret text as
a Date by inserting a "D" in front of the text, as in
[math]{D10.01.1998}[/math], so 10.01.1998 is interpreted as a
date instead of a time.

Times
Like dates, times are used in mathematical expressions by enclosing them in
curly braces. You may easily add or subtract hours, minutes, or seconds
from times by expressing them as a complete time. Use 0 for values that you
want ignored. That is, in order to add 2 minutes to the current time you would
write an expression like the following [math time]{[time]}+{00:02:00}[/math]. It
is a good idea to group math expressions involving time together by using
parentheses.

The result of an expression involving times is the number of seconds since
midnight (e.g. {10:15:31}+10 adds 10 seconds to the time). Likewise, when
adding numbers to dates, the number represents seconds. The result can
then be formatting using the default time format by using the time format
specifier.

For example:
[math]{11:23:45} - {00:00:45}[/math]
[math time]{11:23} + (5*60)[/math]

Equals the following results:
45
11:28

Note: you may want to convert an integer number to a date or time. Use
[Format Days_To_Date] and [Format Seconds_To_Time] to convert integer
numbers to their equivalent dates/times. The integer number represents the
number of days since midnight, January 1, 0000 and for time it represents
the number of seconds since midnight.

[Format Days_To_Date]729496[/Format] yields 4/17/1997
[Format Seconds_To_Time]46262[/Format] yields 12:51:02

 138 • WebDNA

Tip: sometimes you want to calculate something without displaying the
results, perhaps while calculating a running total. To do this, put "show=F"
into the math parameters, as in [Math show=F]total=total+[subTotal][/Math].
This allows you to perform calculations in the middle of a web page without
the intermediate numbers appearing to the visitor. Later, you can show the
value of the math variable with [Math]total[/Math].

Variables
The [Math] context can be used to keep track of variable values while
evaluating a page. You may also create up to 150 math variables by name.
These named variables can be used in any other [Math] context in the
template: [Math]fred=12/7.5[/Math] ...other text here...[Math]fred/15.2[/Math].
Note that the name of a math variable is limited to 15 characters in length
and must begin with a letter followed by up to 14 letters or numbers. Only the
letters a-z and A-Z are allowed.

For example:
<![math]found=0[/math]>
...
[founditems]
[showif [name]=John]<![math]found=found+1[/math]>[/showif]
[/founditems]
Found [found] of John’s Record(s)![/showif]

The [Math] context in this example is used to add the number of records
matching a specified criteria. The first two instances of the [Math] context are
wrapped in the HTML comment tags to not show the value of the variables in
these places. At the end, the value is displayed.

Functions
The [Math] context also has built-in functions that can be used in an
expression. The following functions are available:

.

.

Sin − Returns the sine of a number (degrees).
Example: [math]sin(35)[/math] = .57...

Cos − Returns the cosine of a number (degrees).
Example: [math]cos(45)[/math] = .70...

 Programmer Guide • 139

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Tan − Returns the tangent of a number (degrees).
Example: [math]tan(60)[/math] = 1.73...

Asin − Returns the arcsine of a number (degrees).
Example: [math]asin(.3)[/math] = 17.45...

Acos − Returns the arccosine of a number (degrees).
Example: [math]acos(.6)[/math] = 53.13

Atan − Returns the arctangent of a number (degrees).
Example: [math]atan(.9)[/math] = 41.98

SinH − Returns the hyperbolic sine of a number (degrees).
Example: [math]sinh(.1)[/math] = .10...

CosH − Returns the hyperbolic cosine of a number.
Example: [math]cosh(.2)[/math] = 1.02...

TanH − Returns the hyperbolic tangent of a number.
Example: [math]tanh(1)[/math] = .64...

Exp − Returns e to the given power.
Example: [math]exp(3)[/math] = e3 = 20.07...

Log − Returns the natural logarithm (ln) of a number.
Example: [math]log(5)[/math] = ln 5 = 1.60...

Log10 − Returns the standard logarithm (base 10) of a number.
Example: [math]log10(20)[/math] = 1.30...

Sqrt − Returns the square root of a number.
Example: [math]3*sqrt(4)[/math] = 6

Floor − Rounds a number down to the nearest integer.
Example: [math]floor(2.9)[/math] = 2

Ceil − Rounds a number up to the nearest integer.
Example: [math]ceil(2.1)[/math] = 3

Abs − Returns the absolute value of a number.
Example: [math]abs(-2)[/math] = 2

Deg − Converts a radian value to degrees.
Example: [math]deg(pi)[/math] = 180

 140 • WebDNA

. Rad − Converts a degree value to radians.
Example: [math]rad(45)[/math] = .78...

[TIME] TAG
Syntax: [Time]

Placing [Time] in your template displays the current time set on your web
server’s clock. The format of the time is normally HH:MM:SS (24-hour clock),
but you can change the default format by changing the TimeFormat
preference. You can also override the default time format by specifying a
format inside the tag, such as [Time format=%H:%M:%S]. See [Date] for
details.

Text Manipulation

[BOLDWORDS] CONTEXT
Syntax: [boldWords wordlist]Any Text[/boldWords]

Result: Wraps the HTML bold tags around the specified words in the text.

Required Tag Parameter: Wordlist (a comma delimited list of words to bold
in the text between the context tags)

To automatically boldface matching words in portions of a template, insert a
boldwords context around the text. Any words inside the context that match
words in the word list are automatically surrounded by the HTML . . .
 tags displaying them as bold in the page.

For example (normally you would put the following text into a .tpl file on your
server and use a web browser to link to it):

[BoldWords Grant,John]
John and Grant helped write this product.
[/BoldWords]

Anywhere the words Grant or John appear in the contained text, they are
wrapped with Grant or John, respectively. You may use
any [xxx] tags in the word list or the container, as in [boldwords
[name]]Please embolden this [name][/boldwords]. All [xxx] tags inside the

 Programmer Guide • 141

context are first substituted for their real values, then WebDNA searches for
and boldfaces the matching words.

This context is used to assist visitors to more easily view what they are
searching for in a database. In the following example, the visitor has
previously typed a text string into a search form with an <input
name=”wodescriptiondata”> form variable. [FoundItems] loops through all of
the matching records in the database, and words that match the search text
are displayed boldface in the [description] field as shown below:

[founditems]
Description:
[boldwords [wodescriptiondata]][description][/boldwords]
[/founditems]

Note: A maximum of 50 words is allowed in the WordList. You can put as
many words as you like <i>inside</i> the context, and all occurrences of
matching words will be bolded, but the list of words to look for is limited to 50.

[CAPITALIZE] CONTEXT
Syntax: [capitalize]some TEXT[/capitalize]

To convert the words of a sentence to capitalized form, place them inside a
[capitalize] context. Only the first letter of each word (any letter following a
space) is capitalized. If the remaining letters in the word are uppercase, they
are automatically changed to lowercase. If the word begins with a numeral,
the numeral is left unchanged, and the rest of the letters display as
lowercase. No attempt is made to be grammatically correct—articles such as
“a, an, of” are capitalized just like any other word.

For example:
[Capitalize]Some Text that contains upper- and lower case letters[/Capitalize]
[Capitalize]HI THERE[/Capitalize]
[Capitalize]this is my 1st time at bat[/Capitalize]
[Capitalize]a of on at the in or[/Capitalize]
In the examples above, the displayed text will be:
Some Text That Contains Upper- And Lower Case Letters
Hi There
This Is My 1st Time At Bat
A Of On At The In Or

 142 • WebDNA

[CONVERTCHARS] CONTEXT
Syntax: [convertchars]Any Text[/convertchars]

Result: Changes ‘illegal’ characters into legal HTML.

Optional Tag Parameter: db (the conversion database to be used)

To automatically convert certain characters such as the trademark symbol,
copyright symbol, or curly-quotes into valid HTML, place the text inside a
[ConvertChars] context. The illegal letters are then converted to legal HTML.
For example, ™ becomes <small>TM</small>, and © becomes ©. This
context can be especially useful when your pages contain characters other
than those in the standard English alphabet.

For example (normally you would put the following text into a .tpl file on your
server and use a web browser to link to it):

[ConvertChars]Some Text that contains
© or similar letters[/ConvertChars]

The above line of WebDNA would produce the following:
Some Text that contains © or other unusual letters

Anywhere the illegal characters appear inside the context, they are converted
to equivalent HTML. You can insert any [xxx] tags inside the context. For
example, you can use fields from a database, or even [include] the entire
contents of another file. The character conversions are controlled by
WebDNA’s StandardConversions.db database file.

To add your own conversions, edit the StandardConversions.db file and
place the ASCII hex value (using %XX notation) of the character to be
converted followed by a tab and the text with which you want to replace that
letter (up to 63 characters).

You may optionally specify an alternate database, which contains a list of
character conversions:

For example:
[ConvertChars db=MyConversions.db]...[/ConvertChars]

This provides the ability to perform different conversions, such as multiple
ISO character sets in different languages. The database must be of the
following form:

--- MyConversions.db ---

 Programmer Guide • 143

from<tab>to
%0B<tab>

%0D<tab><P>
©<tab>©
�<tab>^{TM}

Notice you can use escaped-ASCII to specify characters such as Carriage
Return (%0D), Soft Return (%0B), Tab (%09), etc. The text in the From
column must be only one character, while the text in the To column may be
as many as 63 characters.

Note: Normally all database file paths are relative to the local template, or if
they begin with "/" they are relative to the web server's virtual host root. You
may optionally put "^" in front of the file path to indicate the file can be found
in a global root folder called "Globals" inside the WebCatalogEngine folder.
This global root folder is the same regardless of the virtual host.

[COUNTCHARS] CONTEXT
Syntax: [countchars]Some text[/countchars]

Result: Returns the number of characters (including white space and
punctuation) within the context.

For example:
[countchars]Some text[/countchars]

This example returns 9.

[COUNTWORDS] CONTEXT
Syntax: [countwords delimiters=characters]Some Text[/countwords]

Required Tag Parameter: delimiters (A list of characters used to separate
the “words” to be counted. The delimiters may be in URL notation. In order to
use the plus sign ‘+’ as a delimiter, place it in a [URL] context or encode it as
hex. In URL notation, the plus sign is always converted to a space unless it is
in hex notation.)

Result: Counts the number of words inside the context. To count the
number of words in something, place the text inside a [CountWords] context.

 144 • WebDNA

For example:
[CountWords Delimiters= ,]This is a big long sentence, don’t you

think?[/CountWords]

In the example above, the displayed text is “9.” The number displayed is the
number of words inside the context—the number of words found depends on
the delimiters specified. If you specify spaces, commas and periods as
delimiters, then those characters are not counted and words will be defined
as any text that is not a delimiter. Long runs of delimiters are ignored, so
more than one space between words does not increase the word count.

Note: To count the number of lines in a multi-line string (such as the number
of paragraphs in a story), specify carriage return as the delimiter. For
example:

[CountWords Delimiters=%0D]first line
second line
third line
[/CountWords]

This returns “3,” where the “words” are actually defined as whole lines of text.
Blank lines do not count. %0D is the hexadecimal equivalent to carriage
return.

[CONVERTWORDS] CONTEXT

Syntax: [ConvertWords db=xx.db]Any Text[/ConvertWords]

Result: Changes specified words in a string of text to different words, based
on a database of conversions.

To automatically convert certain words into other words, create a database of
words to be changed, and put the text to be converted inside a
[ConvertWords] context. Any matching words will be changed to
corresponding words in the database lookup table.

Example (normally you would put the following text into a .tpl file on your
server and use a web browser to link to it):

[ConvertWords db=glossary.db]A HTTP request first uses DNS to look up the ip
address[/ConvertWords]

 Programmer Guide • 145

The above line of WebDNA would produce the following (given the proper
glossary.db):

A Hypertext Transport Protocol request first uses Dynamic Naming System to
look up the Internet Protocol address

Here’s what the glossary.db file would look like for the example above:
-- glossary.db—
from<tab>to
HTTP<tab>Hypertext Transport Protocol
DNS<tab>Dynamic Naming System
ip<tab>Internet Protocol

Anywhere the words in the from column appear in the text, they are replaced
with whatever is in the to column. There is no limit to the length text in either
the from or to columns. You may put any kind of text into either column; for
example, HTML is legal in either column.

Parameter Description

db (Required) path to conversion database which
contains list of "from" and "to" conversions of words to
other words

case (Optional) T or F to indicate that word comparisons
should be case-sensitive or not. Default is F, case-
insensitive

word (Optional) SS, WW, SW to indicate that words should
be matched as SubString, Whole Word, or Start of
Word, same as search parameters when matching
text in a database

Some handy uses for [ConvertWords] include removing foul language from
online message boards, spelling out acronyms, changing nicknames to full
names, inserting hyperlinks, and expanding glossary terms. The following
conversion database may give you some ideas:

-- conversion.db—
WebDNA Corp.<tab>WebDNA Corp.
Mike<tab>Michael
foulword<tab>f******d
support<tab>support
logo<tab>

 146 • WebDNA

[DECRYPT] CONTEXT
Syntax: [decrypt seed=8 character seed]Encrypted Text[/decrypt]

Result: Using the same seed value that was used to encrypt a block of text,
[decrypt] will decrypt the text. Without the proper seed, the text cannot be
decrypted.

Required Tag Parameter: seed (The same 8 character seed used to
encrypt the block of text. Note: This parameter is not required for
method=base64 decrypting.)

Optional Tag Parameter: method (Either “CyberCash” or “Base64”. If not
specified, then standard WebDNA decryption is assumed. CyberCash is the
triple-DES encryption used to communicate with the CyberCash Cash
Register servers. Base64 is the encoding (not safe for encryption) that
standard HTML browsers use for Basic Authentication.You can store
sensitive data, like credit card numbers in a database as encrypted text. A
special password protected page can let you view the original credit card
number.)

For example:
[decrypt seed=ABcd12#$][EncryptedCCNumber][/descrypt]

Note: You must supply a seed value to WebDNA’s [decrypt] context. For
safety, all data that is encrypted using WebDNA’s internal seed (no seed
value specified to the [encrypt] context) may not be decrypted.

[ENCRYPT] CONTEXT
Syntax: [encrypt seed=8 character seed]Any Text[/encrypt]

Optional Tag Parameters:

• seed (Any 8-character seed that can be used to [decrypt] the text. For
CyberCash, this should be the MerchantKey you were assigned when
you created a CyberCash merchant account. For standard WebDNA
encryption, this is your secret key for decryption later. CyberCash
encryption is one-way; it cannot be decrypted by your server. This
parameter is not required for method=base64 encryption.)

 Programmer Guide • 147

• method (Either “CyberCash” or “Base64”. If not specified, then
standard WebDNA encryption is assumed. CyberCash is the triple-
DES encryption used to communicate with the CyberCash
CashRegister servers. Base64 is the encoding (not safe for
encryption) used by standard HTML browsers for Basic
Authentication. Do not attempt to encrypt more than 48 bytes using
method=Base64.)

• file (Specifies a file that is to be encoded using Base64. This is useful
for sending e-mail attachments using the WebDNA sendmail context.
Note that anything between the opening and closing encrypt tag will
be ignored if this parameter is present.

Note: This only applies to WebDNA version 4.0.2rc1 and above.)

• emailformat (For Base64 only, this specifies if the resulting encoded
string should contain line breaks suitable for e-mail applications. Valid
values are either 'T' or 'F' the later being the default. This should be
used in conjunction with the file parameter when sending e-mail
attachments from a WebDNA template.

Note: This only applies to WebDNA version 4.0.2rc1 and above.)

Result: Using a specified seed value, the [encrypt] context encrypts the
enclosed block of text. The 8-character seed may be any combination of
letters, numbers or other characters.

Use [Decrypt] to decode the text. To decrypt a sequence of text, you must
set the seed value to exactly the same as when you encrypted it. The seed
may be a sequence of up to 8 characters (anything you can type on the
keyboard, except '&' or '=' or '[' or ']'). Do not ever let anyone know what the
seed value is, because that would allow him or her to decrypt the text.

This context is most often used to store passwords in a database (such as
WebDNA's own Users.db), so that in the unlikely event that someone is able
to download the file, the passwords will be unreadable.

Caution: Do not lose your seed value: once the text is encrypted, the same
seed value must be supplied to the [decrypt] context to return the text to
normal. This is because the [encrypt] context works in such a way that the
same text, using the same seed, does not encrypt the same way every time.
Thus you cannot simply compare the encrypted text to see if the original text
is the same.

Note: Do not ever forget your passwords or seed values! Even WebDNA
Software Corp. cannot decrypt something once it has been encrypted!

 148 • WebDNA

For example (normally you would put the following text into a .tpl file on your
server and use a web browser to link to it):

[encrypt seed=abCD12%&]SomeText[/encrypt]

However, there are certain situations where the encrypted text should always
be the same for the same source text. The passwords stored in the Users.db
file are this way so they don’t have to be decrypted in order to compare them.
If you [encrypt] text without supplying a custom seed value, WebDNA uses
an internal seed to encrypt the text ensuring the same source text always
creates the same encrypted text.

For example:
[encrypt]Password[/encrypt]

Note: For safety, text encrypted without a seed value may NOT be
decrypted.

You may also encrypt entire WebDNA templates. See Encrypting Templates
for more information.

[FORMAT] CONTEXT
Syntax: [Format FormatSpec]Text or Number[/Format]

Formats text or numbers in various widths or currency formats.

To display numbers with various decimal points or currency formats,
surround the number or text with a [Format] context.

For example, normally you would put the following text into a .tpl file on your
server and use a web browser to link to it:

[Format 10.2f]99.5[/Format] (f stands for floating-point number)
[Format 10s]Hello[/Format] (s stands for string of text)
[Format Days_To_Date %m/%d/%y]195462[/Format]
[Format Seconds_To_Time]49768[/Format]
[Format Seconds_To_Time %I:%M:%S %p]49768[/Format]
[Format thousands 14.2f]394363210[/Format]
[Format thousands 14,2f]394363210[/Format]
[Format thousands .3d]7[/Format] (d stands for decimal number)

The number displays right justified with enough preceding spaces and digits
after the decimal point to fill the exact width of the format specifier. Text is left
justified, with enough spaces after it to exactly fill the width specifier.

 Programmer Guide • 149

| 99.50| (10 wide, 2 after the decimal)
|Hello | (10 wide, text)
|13:49:28|
|01:49:28 PM|
|04/07/1997| (#days as a date)
|394,363,201.00| (14 wide, number with thousands separator)
|394.363.201,00| (14 wide, number with European thousands separator)
|007| (3 wide, integer part of number only, zeroes preceding)

Given a number 345.67, the following format specifiers will display as shown:
8.3f = | 345.670| (f stands for floating point)
8.2f = | 345.67|
8.1f = | 345.7| (notice rounding from .67 to .7)
8.0f = | 346| (notice rounding from .67 to next higher integer)
5d = |00345| (notice no rounding, and preceding 0s to fill 5 digits)

Optional date format—to format a number as a date (the number must
represent the number of days since Midnight, January 1st, 0000), use the
optional date specifier and a date format, the same as from the [date] tag.
Also see date and time [Math].

[GETCHARS] CONTEXT
Syntax: [getchars start=1&end=3]the text[/getchars]

Result: Returns just the characters, including the starting and ending index
values, from the text within the context.

Required Tag Parameters: Start (the starting index (the first characters
index is 1) to start getting characters from)

Optional Tag Parameters:

• End − The ending index of characters to return. If no end parameter
is used, the last character in the context is considered the end value.

• from− Possible value is “end”. This allows you to get characters from
the end of the text. In this case, the first index value, 1, is the last
character within the context.

• Trim - to remove leading and trailing white space in a given text
string.

 150 • WebDNA

To display a subsection of some text, put the text inside a [getchars] context.
Most often, the contents of the [getchars] context will be the value of an input
field or database field that WebDNA will replace.

Example 1:
[getchars start=1&end=2][field1][/getchars]

Example 2:
[GetChars start=14&end=18]Hello there, Edwina[/GetChars]

Example 2 returns “Edwin”, which is the sequence of letters starting at the
14th position and extending to the 18th position. Extracting sub-portions of text
is useful when you need to get text from files.

Example 3:
[GetChars start=1&end=2&from=end]Hello there, Edwina[/GetChars]

Example 3 returns “na”, which is the sequence of letters starting at the 1st
position from the end and extending to the 2nd position from the end.

You can use the new 'TRIM=Right/Left/Both' parameter for the [GetChars]
context to remove leading and trailing white space in a given text string.

Example WebDNA:
[text]test_string=
 This is a test.
[/text]

Example input string: "[test_string]"

Remove leading white space:
>[getchars start=1&end=&trim=left][test_string][/getchars]<

Remove trailing white space:
>[getchars start=1&end=&trim=right][test_string][/getchars]<

Remove leading and trailing white space:
>[getchars start=1&end=&trim=both][test_string][/getchars]<

 Programmer Guide • 151

Remove leading and trailing white space, and retrieve characters in the
1-4 positions:

>[getchars start=1&end=4&trim=both][test_string][/getchars]<

Remove leading and trailing white space, and retrieve characters in the
1-5 positions, from the end:

>[getchars
start=1&end=5&trim=both&from=end][test_string][/getchars
]<

Results...

Example input string: "

 This is a test.

"

Remove leading white space:

>This is a test.

<

Remove trailing white space:

>

 This is a test.<

Remove leading and trailing white space:

>This is a test.<

Remove leading and trailing white space, and retrieve characters in the 1-4
positions:

>This<

 152 • WebDNA

Remove leading and trailing white space, and retrieve characters in the 1-5
positions, from the end:

>test.<

Note that you still need to supply the 'start' and 'end' parameters.

[GREP] CONTEXT

Syntax: [[Grep search=regexp&replace=regexp]Any Text[/Grep]

Result: Replaces text based on a regular expression. This popular UNIX
utility has been adapted to WebDNA.

Example (normally you would put the following text into a .tpl file on your
server and use a web browser to link to it):

[Grep search=([0-9]*-[0-9]*)&replace=\1]Hi, my phone number is 555-
1234, and I'd like you to call me[/Grep]

In the example above, the displayed text will be:

Hi, my phone number is 555-1234, and I'd like you to call me

Parameter Description

search (Required) Regular expression that defines
what text to search for in the body of the
context

replace (Required) Regular expression that defines
how to output the resulting text

New for 5.0
IgnoreCase

(Optional) ignores case sensitivity while
performing the grep function

There is a new 'IgnoreCase' parameter for the [GREP] context. Here is an
example:

Search for 'usa' and replace with 'USA'

 Programmer Guide • 153

[grep search=usa&replace=USA&ignorecase=T]
I was born in the usA

I was born in the uSa

I was born in the Usa

[/grep]

Other examples...

[grep search=[0-9]*(ScOtT)[0-

9]*&replace=___\1___&IgnoreCase=T]123scott321
[/grep]

[grep
search=staging&replace=development&IgnoreCase=T]/Staging
/myfile[/grep]

Results:

I was born in the USA
I was born in the USA
I was born in the USA

Other examples...
___scott___
/development/myfile

 [INPUT] CONTEXT
Syntax: [input]Any Text[/input]

Result: Prepares text for use in input forms using <textarea> tags.

To prepare text fields that may contain carriage returns for use in <textarea>
input fields in a form, place the text inside an [Input] context. Certain
characters, such as carriage returns, are converted to “soft-returns” when
they are saved in a database file. The [Input] context converts them back to
“hard-returns” so they look right when displayed inside <textarea> tags.

For example:

 154 • WebDNA

<textarea>[input][fieldName][/input]</textarea>

This context is most often used when you create a form that lets visitors edit
large portions of text in a database field that has carriage returns in it. If you
don’t use this context, then the lines of text inside the <textarea> multi-line
input field appear to have “lost” all the carriage returns originally entered.
This is because web browsers don’t understand how to display a “soft-return”
character. Instead, they display it as a space. Additionally, HTML text in the
edit area can be confused with HTML in the enclosing page. As such the
[input] context converts all angle brackets to > and < to display them
properly.

The following list explains what happens to text placed inside an [Input]
context:

If the letter is... then it is translated to...

Soft-return (%0B) Hard-return (%0D)
< <
> >
& &
“ "

Any other letter no change

Note: There may not be a reason to use this context unless it’s inside
<textarea>, as no other input field allows carriage returns typed in it.

[LISTPATH] CONTEXT
Syntax: [listpath path=folder1/file.html][name][/listpath]

Result: Allows you to specify the specific components of a file path. This
context loops through all components.

Required Tag Parameters: path (URL-style path to be broken up)

Optional Tag Parameters:

• fileOnly − If the value of this parameter is “T” (True), then only the
last component of the path is returned. If the path ends in a slash,
then the filename is considered to be blank “”.

• pathOnly − If the value of this parameter is “T” (True), then the
components leading up to the filename are listed.

 Programmer Guide • 155

Optional Context Tags:

• [index] − From 1 to the number of components looped through. If the
path ends in a slash, a final (extra) blank component for the file name
is added: “”.

• [name] − The value for each component being listed. This may be a
folder or file name.

• [filename] − This value is always available and can be used to decide
whether to loop through a path (in which case [FileName] is blank “”)
or a file path.

To display a list of all the separate folder names in a path (text separated by
“/”), use a [ListPath] context. You may optionally specify that only the
filename will be displayed (subtracting any path leading to it), or only the
folder names (subtracting the filename from the end).

ListPath is only used for text-manipulation − it does not actually look at your
hard disk. To find all the files in a folder on your hard disk, use [ListFiles]
instead.

For example (normally you would put the following text into a .tpl file on your
server and use a web browser to link to it):

[ListPath path=/folder1/folder2/folder3/filename.txt]
Path part #[index]: [name]

[/ListPath]

The example above yields:
Path part #1: folder1
Path part #2: folder2
Path part #3: folder3
Path part #4: filename.txt

[ListPath path=/folder1/folder2/folder3/filename.txt&FileOnly=T]

Path part #[index]: [name]

[/ListPath]

The example above yields:
Path part #1: filename.txt

[ListPath path=/folder1/folder2/folder3/filename.txt&PathOnly=T]

Path part #[index]: [name]

[/ListPath]

The example above yields:
Path part #1: folder1

 156 • WebDNA

Path part #2: folder2
Path part #3: folder3

 [LISTWORDS] CONTEXT
Syntax: [listwords words=text&delimiters=characters]Text[/listwords]

Result: Displays a list of all the separate words in a string. You can also
specify delimiters to define the boundaries of words (usually spaces,
commas and periods).

Required Tag Parameters: words=text (the text that you would like to break
up into individual words)

Optional Tag Parameters:

• delimiters=characters − List of single characters defining word
boundaries. Defaults to space and comma. The delimiters can be
specified URL-style (as hex values after the percent sign) using the
[URL] context. In particular, you can use the plus sign as a delimiter if
you enclose it in the [URL] context since a plus is considered a space
in a URL.

• tabs=T − Setting Tabs=T causes the list of words to break at tab
boundaries only, and runs of tabs are not collapsed. This assists in
parsing special formats where two tabs in a row are important and
should not be skipped.

Optional Context Parameters:

• [index] − A number from 1 to the number of words in the text.

• [word] − The word separated from the text.

Example 1:
[ListWords Words=This is a big long sentence]
[index]: [word]

[/ListWords]

The example above yields the following:
1: This
2: is
3: a
4: big
5: long
6: sentence

 Programmer Guide • 157

Example 2:

[ListWords Words=Hello. My name is Carl!&Delimiters= ,!]
[index]: [word]

[/ListWords]

The example above yields the following. The “.” at the end of “Hello.” is
shown as part of the word, because “.” was not specified in the list of
delimiters. Also note the long run of spaces in a row is collapsed and does
not appear in the word list:

1: Hello.
2: My
3: name
4: is
5: Carl

[LOWERCASE] CONTEXT

Syntax: [Lowercase charset]Any Text[/Lowercase]

Result: Changes all upper case letters to lower case.

To convert certain characters to lower case, put them inside a [Lowercase]
context.

For example, normally you would put the following text into a .tpl file on your
server and use a web browser to link to it:

[Lowercase]Some Text that contains upper- and lower case letters[/Lowercase]

In the example above, the displayed text will be some text that contains
upper- and lowercase letters. This context is included for completeness as a
complement to [Uppercase].

Note: you can optionally change the behavior of lowercase with charset=mac
(common on Macintosh) or charset=iso (common on PCs), which causes
high-ASCII characters to change case differently depending on which
character set your data is.

[Lowercase charset=iso]...some text...[/Lowercase]

 158 • WebDNA

[MIDDLE] CONTEXT
Syntax: [middle startafter=text&endbefore=text]Some text[/middle]

Result: To display a subsection of some text, put the text inside a [Middle]
context.

Required Context Tags:

.

.

StartAfter=text − A string of text characters to search for that define
the beginning of the text to be returned. All preceding text (and the
StartAfter text itself) are ignored.

EndBefore=text − A string of text characters to search for that define
the end of the text to be returned. All following text (and the EndBefore
text itself) are ignored.

For example:
[Middle StartAfter=<body>&EndBefore=</body>]
<html>
<head>
</head>
<body>
Hi There
</body>
</html>
[/Middle]

The example above returns “Hi There”, which is the sequence of letters
between “<body>” and “</body>”. Extracting sub-portions of text like this is
useful when removing the HTML header information from a file (or web page)
containing HTML that you want to include inside the body of a web page.

[RAW] CONTEXT
Syntax: [raw]Any Text, including [xxx][/raw]

Result: Displays enclosed text without interpreting the [xxx] tags in any way.

 Programmer Guide • 159

To prevent WebDNA from interpreting [xxx] tags, enclose the text inside a
[Raw] context. The text inside the container is displayed unchanged until the
[/raw] tag is found.

For example:
[raw]Any text, including any [xxx]
tags such as [date] or [delete][/ raw]

In the example above, the displayed text equals:
Any text, including any [xxx] tags such as [date] or [delete].

This context is most often used within WebDNA’s documentation to make it
possible to display the unmodified tags without them being first interpreted.
Also, any HTML pages on your site that have many [or] characters might be
misinterpreted by WebDNA, so by surrounding those pages with <![
raw]>...entire text of page...<![/Raw]>. Notice the <!> HTML comments in this
example: they are used so that if this page is ever displayed without being
processed by WebDNA, the[Raw] tags will be invisible.

RAW COMMAND
Syntax: Raw

Result: Returns the “raw” contents of a template.

Sometimes you, or someone from technical support, needs to view the text of
a template file in its raw form without being processed by WebDNA. Usually
this is so you can see the WebDNA commands rather than the final resulting
HTML those WebDNA commands generate. WebDNA normally intercepts
URLs leading to template files and makes it impossible to “view the source”
of a WebDNA template.

The Raw command is provided for sites using Suffix Mapping to
automatically process all files ending in a particular extension. In this
scenario, it is impossible to link to the file directly to view the raw contents of
the file. While this is good because it does not allow the outside world to see
the contents of your pages, it can make site development difficult if you are
debugging a particular page remotely. The Raw command should be
protected with the Admin password so it is not available to everyone
accessing your site.

 160 • WebDNA

[REMOVEHTML] CONTEXT

Syntax: [RemoveHTML]Any Text[/RemoveHTML]

 Result: Removes HTML or WebDNA tags from a string of text.

To automatically strip out HTML or WebDNA tags from text, put the text
inside a [RemoveHTML] context. Any HTML found in the text will be
removed, leaving just the plain non-HTML text behind. Alternately you can
specify that WebDNA be removed instead.

For example, normally you would put the following text into a .tpl file on your
server and use a web browser to link to it:

[RemoveHTML]Some Text that contains
 <h3>or</h3> other
HTML[/RemoveHTML]

The above line of WebDNA would produce the following:
Some Text that contains or other HTML

Anywhere HTML sequences appear inside the context, they will be removed.
You may put any [xxx] tags inside the context—for instance, you may use
fields from a database, or even [include] the entire contents of another file.
HTML is recognized as any text that begins with “<” followed by any number
of non-space characters, followed by any number of characters, followed by
“>”.

Parameter Description

RemoveWebDNA (Optional) T or F to indicate that you also want to
remove WebDNA from the text. HTML is always
removed from the text. Default is to remove HTML
only.

ReplaceWith Text with which you want to replace the HTML
sequences. Defaults to nothing.

[TEXT] CONTEXT
Syntax: [Text]Text Variable Assignment[/text]

Result: Stores a text variable that can be used later in the template.

 Programmer Guide • 161

To remember some text for use later in a page, assign a text variable using
the [Text] context. You may assign as many named text variables (similar to
[math] variables, except they store textual information instead of numbers) as
you want per page. The length of the text is also only limited to RAM.

Optional Tag Parameters:

• multi=Boolean − “T” or “F”. Allows you to assign more than one text
variable in a single context.

• show=Boolean − “T” or “F”. Default behavior is to hide text when
assigning to a text variable. If you want the text to be shown at the
same time it is assigned to a variable, you may set Show=T.

Optional Context Parameters:

• [variable] − Inserting the name of any variable that you create with
the [text] context in square brackets will be replaced by the value of
that variable.

For example: (normally you would put the following text into a .tpl file on your
server and used a web browser to link to it)

[Text Show=F]sentence1=This is a big long sentence, don’t you think?[/Text]
[Text]name=John[/Text]
[Text]sentence1[/Text]
[Text]name[/Text]
[name]

In the example above, the following text displays:
This is a big long sentence, don’t you think?
John
John

The Text context looks for an equal sign “=” in the body of the text, and if it
finds one then it assumes you are assigning a new value to a new text
variable. If no equal sign is present in the body of the text, then it assumes
you want to retrieve the value of a previously stored variable. Reassigning a
text variable to a new value replaces the previous value.

You do not have to use the [Text] context to display a text variable; you may
simply put the variable name inside brackets like so: [varname]. Both
[Text]varname[/Text] and [varname] will display the same thing.

Parameters Description

 162 • WebDNA

Parameters Description

multi (optional) "T" or "F". Allows you to assign more than one
text variable in a single context. [Text
multi=T]var1=Joe&var2=Fred[/Text] simultaneously
assigns two variables, named "var1" and "var2" to the
values "Joe" and "Fred."

secure (optional) "T" or "F". Defaults to "T". Setting secure=F
this text variable can be overridden by incoming form
variables. This is not recommended, and the default
behavior is secure. If you really want outside visitors to
your web site to be able to change the values of your
internal text variables (usually with a <form>), then you
may use the non-secure version of this parameter.

show (optional) "T" or "F". Default behavior is to hide text
when assigning to a text variable. If you want the text to
be shown at the same time it is assigned to a variable,
you may set Show=T. If you set multi=T at the same
time, then no text will be displayed.

[UNURL] CONTEXT
Syntax: [unurl]URL text[/unurl]

Result: To automatically convert text containing URL characters such as
%20, %3A, etc, place it inside a [UnURL] context. Certain letters such as
spaces, colons, and the equals sign (=) are not allowed inside URLs unless
they are first converted to hexadecimal form—the UnURL context converts
them back. This is the opposite of [URL].

For example (normally you would put the following text into a .tpl file on your
server and use a web browser to link to it):

[UnURL]Filename%20with%20spaces.gif[/UnURL]

In the example above, the text displays as:
Filename with spaces.gif

Note: By default, the [UnURL] context will not convert hex codes that contain
lowercase letters. So, %3A will be converted to a colon while %3a will not.
Starting with WebDNA version 402rc1, you can use the 'IGNORECASE'
parameter to force the [UnURL] context to convert hex codes containing

 Programmer Guide • 163

lowercase letters. So [UnURL IGNORECASE=T]%3a[/UnURL] will convert
%3a to a colon.

This context is rarely needed, because most of the time WebDNA has
already converted the text (in URL parameters, for instance) back to plain
text. If you plan to store text with embedded unusual characters such as tabs
or carriage returns into a field of a database, you might use [URL] to store
them and [UnURL] to retrieve them.

[URL] CONTEXT
Syntax: [url]Any Text[/url]

Result: Changes text to URL-compatible characters.

To automatically convert text containing spaces or other “illegal” URL
characters, place it inside a [url] context. Certain letters, such as spaces,
colons, and the equals sign (=) are not allowed inside URLs unless they are
first converted to hexadecimal form.

For example:

In the example above, the text displays as:

This context is frequently used with [sku] fields that represent the name of a
picture of a product, as in because many times a
product sku will have “illegal” characters in it.

See the discussion on Important Topics to determine when to use the [url]
context.

[UPPERCASE] CONTEXT
Syntax: [uppercase]Any Text[/uppercase]

Result: Changes all lower case letters to upper case.

Optional Tag Parameter: charset (Either “iso” or “mac” depending on how
you want high ASCII characters (decimal value greater than 127) treated.)

 164 • WebDNA

To convert certain characters to upper case, place them inside an
[uppercase] context.

For example:
[uppercase]Some Text that contains upper- and
lower-case letters[/uppercase]

In the example above, the text displays as:
SOME TEXT THAT CONTAINS UPPER- AND LOWER-CASE LETTERS

This context is most often used with [UserName] and [Password] tags,
because many web servers do not allow lowercase letters to be sent from the
browser’s realm protection dialog. By making sure that all usernames /
passwords entered into a database are uppercase, you can be sure that all
browsers and web servers will work properly for password authentication.
The [UpperCase] . . . [/UpperCase] context is also useful to force fields to be
consistent when the data will be used with the [LookUp] command as with
the password database. The consistency improves the speed with which the
data is found.

For example:
[uppercase charset=iso]å[/uppercase]

This displays “Å” if å has the value specified in the ISO-Latin1 character set.

Passwords

[AUTHENTICATE] TAG
Syntax: [authenticate Some Text]

Placing [Authenticate] in your template causes the remote browser to display
the Username/Password dialog with whatever text you specify. When the
visitor types a username and password into their browser, your templates
can get that information by including the [Username] and [Password] tags.
Normally you [Authenticate] is placed inside [ShowIf] or [HideIf] contexts
comparing the username/password, otherwise the password dialog continues
popping up forever.

Note: [Authenticate] is a low-level tool requiring some sophisticated
knowledge to use, so most people use the simpler [Protect] tag to password-
protect a page. You can see an example of how [Protect] makes use of

 Programmer Guide • 165

[Authenticate] by reading the WebDNA in the file “MultiGroupChecker” on your
hard disk (in the WebCatalogEngine folder).

 [PASSWORD] TAG
Syntax: [Password]

Result: Placing [Password] in your template displays the password entered
into the remote browser’s last Realm password dialog. See [UserName] and
[Authenticate].

[PROTECT] TAG
Syntax: [Protect group1,group2]

Result: Placing [Protect Groups] in your template causes the remote browser
to display the Username/Password dialog until the visitor enters a
username/password belonging to one of the specified groups. The Users.db
database provided with WebDNA contains all the username/password/group
information.

[USERNAME] TAG
Syntax: [UserName]

Result: Placing [UserName] in your template will display the username
entered into the remote browser’s last Realm password dialog. See
[Password] and [Authenticate].

Files and Folders

[APPENDFILE] CONTEXT
Syntax: [AppendFile FileName]Text[/AppendFile]

Result: Writes text to the end of an existing file.

To add text to the end of an arbitrary text file, place an [AppendFile] context
into a template. [AppendFile] creates a new file if one does not already exist.

All text is placed at the end of the file. The file must not be a database file
currently open and in use by WebDNA. See [WriteFile] for further details.

Note: [AppendFile] does not ‘understand’ databases .To append a new
record to the end of a database, use Append instead.

For Example: Usually, the following text is placed into a .tpl file on your
server then uses a web browser to link to it):

[AppendFile SomeTextFile]Hello, my name is Grant. The time is [time]
This is a second line[/AppendFile]

The text file “SomeTextFile” opens, and displays the following text:
Hello, my name is Grant. The time is 13:43:01

A second line is written at the end of the file. Notice that carriage returns
inside the context are written to the file exactly as they appear. Also notice
that any WebDNA [xxx] tags inside the context are substituted for their real
values before being written to the file. You may specify a full or partial path to
the file, as in “/Some Folder/file.txt” (starting from the web server’s root) or
“LocalFolder/file.txt” (starting in the same folder as the template file, looking
down into a folder called “LocalFolder”).

Security Note: By default, all files created by WebDNA are tagged with a
special code telling WebSTAR not to display them via URL. If you want files
to be visible to outside browsers, use the optional settings below.

Parameter Description

Secure “T” for files that should be secure—WebSTAR will not
display them.

“F” for files that should be visible via URL—WebSTAR will
display them.

For example:
[WriteFile secure=F&file=SomeFile]...[/WriteFile]

File When you use the secure option above, you must also
provide the name (or relative path) of the file to create.

[CALCFILECRC32] TAG
New for 5.0

 166 • WebDNA

 Programmer Guide • 167

Syntax: [CalcFileCRC32 file=…]

Calculates the CRC32 value of a given file.

Example:
[CalcFileCRC32 file=../header.inc]

Results:
4016676240l

 [COPYFILE] TAG
Syntax: [CopyFile from=FromFile&to=ToFile]

Placing [CopyFile from=fred&to=wilma] in your template immediately copies
the file called “fred” to another file called “wilma.”

[COPYFOLDER] TAG

Syntax: [CopyFolder from=FromFolder&to=ToFolder]

Result: Placing [CopyFolder from=FromFolder&to=ToFolder] in your
template immediately copies the folder called “fredFolder” to another folder
called “wilmaFolder.” The original folder remains where it is currently.

[CREATEFOLDER] TAG
Syntax: [CreateFolder path=folder]

Result: Placing [CreateFolder StarShip/Troopers] in your template
immediately creates a new folder with the name “Troopers” inside a folder
called “StarShip” which is in the same folder as the template itself.

[DELETEFILE] TAG
Syntax: [DeleteFile file=FilePath]

 168 • WebDNA

Result: Placing [DeleteFile file=fred] in your template immediately deletes
the file called “fred” in the same folder as the template. Paths are relative to
the template, so “somefolder/fred” deletes the file down a level from the
template inside a folder called “somefolder,” while “../fred” deletes the file in
the folder one level up from the template.

[DELETEFOLDER] TAG
Syntax: [DeleteFolder path=FolderPath]

Result: Placing [DeleteFolder path=StarShip] in your template immediately
deletes the folder called “StarShip” in the same folder as the template. Paths
are relative to the template, so “somefolder/StarShip” deletes the folder down
a level from the template inside a folder called “somefolder,” while
“../StarShip” deletes the folder inside the folder one level up from the
template. All files inside the folder are deleted, and all subfolders are
deleted, as though you had dragged the folder to the trashcan and
emptied it immediately.

Warning: You can not undo this operation!

Note: if the parameter to [DeleteFolder] is an alias, then just the alias itself is
deleted.

[FILECOMPARE] TAG
New for 5.0

Syntax: [filecompare params...]

The file compare tag compares the size, date, or CRC32 value of two given
files.

Optional Tag Parameters:

• method - Size | Date | CRC32

• file1 - path of first file.

• file2 - path of second file.

• file1crc - arbitrary crc32 value, in place of an actual path for file1.
(useful if you want to store the CRC32 value of a file and use it at a
later time to test if the file contents have been changed)

 Programmer Guide • 169

results: method=Size
SMALLER - file2 is smaller than file1
LARGER - file2 is larger than file1
SAME - file1 and file2 are the same size

results: method=Date
OLDER - file2 is older than file1
NEWER - file2 is newer than file1
SAME - file1 and file2 have the same create date

results: method=CRC32
DIFFERS - the files differ in content
SAME - the files have the same content

Errors:
ERROR_FILE1 - 'file1' could not be found or opened
ERROR_FILE2 - 'file2' could not be found or opened
ERROR_BOTH - neither file could be found or opened

Examples:
[filecompare

method=SIZE&file1=../create_tutorial.tpl&file2=../header
.inc]

[filecompare
method=DATE&file1=../create_tutorial.tpl&file2=../header
.inc]

[filecompare
method=CRC32&file1=../create_tutorial.tpl&file2=../heade
r.inc]

[text]crc_value=[CalcFileCRC32 file=../header.inc][/text]
[filecompare

method=CRC32&file1crc=[crc_value]&file2=../header.inc]

Results:
LARGER
OLDER
DIFFERS
SAME

 170 • WebDNA

[FILEINFO] CONTEXT
Syntax: [fileinfo file=filepath]various file information[/fileinfo]

Result: Allows you to get various bits of information about a particular file.

Required Tag Parameter: <no name> (URL-style path to the file)

Optional Context Tags:

• [isFolder] − “T” or “F” depending upon whether the path leads to
folder.

• [isFile] − “T” or “F” depending upon whether the path leads to a file.

• [exists] − “T” or “F” depending upon whether the path leads to a file
that exists on the drive.

• [fileName] − The name (last component) of the path specified.

• [fullPath] − A platform-specific path to the file that may be a full path
or partial path.

• [createdate] − The date the file was created.

• [createtime] − The time the file was created.

• [modDate] − Last date the file was modified.

• [modTime] − Last time the file was modified.

• [size] The size of the file in bytes.

• [startPath] − The path (minus the file name).

The [fileinfo] context allows you to quickly get information on a particular file
without having to use the [listfiles] context to loop through all the files in a
folder.

For example:
FileInfo ../Pictures/1234.gif]
File Name: [FileName]

Modified: [ModDate]

Size: [Size]

[/FileInfo]

The [fileinfo] context is very useful to deciding whether to include an image
that may or may not exist. This helps prevent “broken” images. However,
since it is slower than just including the image, it should only be used when
existence is in doubt.

 Programmer Guide • 171

For example:
[showif [fileinfo images/test.gif][exists][/fileinfo]=T]

[/showif]

[LISTFILES] CONTEXT
Syntax: [Listfiles path= FolderPath]File Tags[/Listfiles]

Result: Lists all the files in the specified folder.

Parameter Description

path (Required) The path to the folder that is to be listed.
This path is relative to the template

 ShowInvisibles (Optional) Macintosh only: if set to T, then display
invisible filenames, if set to F, do not display
invisible filenames

New for 5.0
Name

(Optional) filters files by name

New for 5.0
Exact

(Optional) if set to T, then display filenames that
match ‘Name’ criteria, if set to F, exact match of
filenames that match ‘Name’ criteria not required

Optional Context Tags:

• [Isfolder] − “T” if this item is actually a folder. “F” otherwise.

• [Isfile] − “T” if this item is actually a file. “F” otherwise.

• [FileName] − Name of the file.

• [Fullpath] − Full path to the file, including its containing FolderPath.

• [Createdate] − Date the file was originally created.

• [Createtime] − Time the file was originally created.

• [Moddate] − Last date the file was modified.

• [Modtime] − Last time the file was modified.

• [Size] − The file’s size, in bytes.

 172 • WebDNA

• [Index] − A number from 1 to the number of files indicating this file’s
position in the list.

• [Startpath] − The folder path leading to the file.

To display a list of all the files in a particular folder, insert the [ListFiles]
context into a WebDNA template. An absolute or relative path to the folder
may be specified just as you would specify an absolute or relative URL. The
folder name may be a WebDNA [xxx] tag. The context tags available vary
depending on the platform used as some file information on a hard drive is
platform specific.

For example:
[Listfiles path=../WebDNA/]
File Name: [FileName]

Modified: [ModDate]

Size: [Size]

[/Listfiles]

You can use the 'Name' and 'Exact' parameters with the [listfiles] context to
'filter' the results.

For example:
[listfiles path=../&name=tpl&exact=f]
[filename]

[/listfiles]

Results:
create_tutorial.tpl

[MOVEFILE] TAG
Syntax: [MoveFile from=FromFile&to=ToFile]

Placing [MoveFile from=fred&to=wilma] in your template immediately moves
the file called “fred” to another file called “wilma,” and deletes the file “fred”
after the move is complete. You may specify a different folder within which to
move the file.

[RENAMEFILE] TAG

 Programmer Guide • 173

Syntax: [RenameFile from=oldname&to=newname]

Result: Placing [RenameFile from=fred&to=wilma] in your template
immediately renames the file called “fred” to “wilma.”

[WAITFORFILE] CONTEXT
Syntax: [waitforfile file=filepath]Text[/waitforfile]

Result: To perform an action as soon as a file appears on disk, put
WebDNA inside of a [WaitForFile] context. The server will wait until the
specified file appears on disk, then execute the text/WebDNA inside the
context.

Required Tag Parameter: file=filepath (URL-style path to file to create
and/or write over.)

Optional Tag Parameter: timeout=seconds (Number of seconds to wait
before canceling the wait. If the timeout value is met the text in the context is
not displayed (or executed).)

Note: Unless you specify a timeout, WaitForFile will wait forever until the file
appears. The template will not finish executing and the HTML will not be
returned to the visiting browser until the WaitForFile finishes.

For example:
[WaitForFile file=ICVer001.ans]
Some WebDNA to parse the ICVerify answer file format and do something

important with it
[/WaitForFile]

[WRITEFILE] CONTEXT
Syntax: [writefile file=filepath&secure=boolean]Text[/writeFile]

Result: Creates a file, if necessary, and writes text to the beginning of a file.

Required Tag Parameter: file=filepath (URL-style path to file to create
and/or write over.)

Optional Tag Parameter: secure=Boolean (“T” or “F” depending upon
whether the file should be visible to a remote browser.)

See [AppendFile] for description of secure.

If you are using the [writefile] . . . [/writefile] context as a method for creating
dynamic HTML, you MUST explicitly state [writefile file=filepath&secure=F]

Note: WriteFile does not ‘understand’ databases. If you want to write a new
record to the end of a database, use Append instead.

For example:
[WriteFile SomeTextFile]
Hello, my name is Grant. The time is [time]
This is a second line[/WriteFile]
The text file “SomeTextFile” is created if necessary and opened, and the text
Hello, my name is Grant. The time is 13:43:01
This is a second line written to the file.

Notice that carriage returns inside the context are written to the file exactly as
they appear. Also notice that any WebDNA [xxx] tags inside the context are
substituted for their real values before being written to the file.

Technical

[APPLESCRIPT] CONTEXT
Syntax: [AppleScript]AppleScript Program[/AppleScript]

Result: Executes the AppleScript contained in the context and displays the
results.

To embed the results of an AppleScript into a page, insert an AppleScript
context into the template. The AppleScript program contained inside the
context is executed, and any returned value is displayed in place of the
context. Any [xxx] tags inside the context are first substituted for their real
values before the AppleScript is executed.

For example:
[AppleScript]if [random]>50
return “It’s more than 50!”
else
return “It’s less than 50!”
end if
[/AppleScript]

 174 • WebDNA

In this example, the tag [random] is first substituted with a random number,
then the resulting AppleScript is executed. Any WebDNA [xxx] tags are
allowed inside the AppleScript program, even if they represent complex
lookups or searches. The WebDNA tags are always evaluated first, and the
resulting text is then executed as an AppleScript program.

AppleScripts have complete access to your hard disk and all programs on
your web server. You can write an AppleScript that erases the contents of
your hard disk. Don’t worry about remote visitors to your web site executing
their own AppleScripts remotely. They can only execute an AppleScript
inside a template file you have saved on your web server’s hard disk.

[COMMAND] TAG
Syntax: [Command]

Result: Placing [Command] in your template displays the WebDNA
command that was used to get to this page. Some examples are ShowPage,
Search, ShowCart, etc. These commands are often used in Form Actions,
but can also be specified in an HREF hyperlink.

[DDECONNECT] CONTEXT
Syntax: [ddeconnect program=name&topic=DDE topic][/ddeconnect]

Required Tag Parameters:

• program=application name (name of the DDE server program to
connect to, such as PCAuthorize)

• topic=DDE topic name (name of the DDE topic on which to send
messages, such as GetBatches. Defined by the DDE server program;
refer to that program’s documentation for more information.)

To embed the results of a DDE command into a page, insert a DDEConnect
context into a template then place [DDESend] contexts inside of that. The
DDESend steps contained inside the context are executed, and any returned
value is displayed in place of the context. Any [xxx] tags inside the context
are first substituted for their real values before the DDE is executed.

DDEConnect does nothing by itself; you must insert one or more [DDESend]
contexts inside it to perform any real work. DDEConnect establishes a

 Programmer Guide • 175

connection to the DDE server program, and provides an environment for the
DDESend contexts to do their work and return text results.

For example:
[DDEConnect program=PCAuthorize&topic=GetBatches]
[DDESend]Tela00001031 1[/DDESend]
[/DDEConnect]

In this example, the DDE command “GetBatches from PCAuthorize” is
executed, and the results (a list of all the batch information for batch #1) is
displayed. Notice that the white space between “Tela00001031” and “1” is
actually a tab character, which is part of the PCAuthorize specification.

Caution: DDE has complete access to all DDE-aware programs on your web
server. You can write a DDE context that can do damage to the machine or
retrieve secret information. However, remote visitors to your web site have
no way of executing their own DDE contexts remotely; they can only execute
DDE commands inside a template file you have saved on your web server’s
hard disk.

[DDESEND] CONTEXT
Syntax: [ddesend]text[/ddesend]

Result: Sends text to a DDE server program on the local machine.

To embed the results of a DDE command into one of your pages, insert a
[DDEConnect] context into a template, and place [DDESend] contexts inside
of that. The DDESend steps contained inside the context are executed, and
any returned value is displayed in place of the context. Any [xxx] tags inside
the context are first substituted for their real values before the DDE is
executed.

DDESend must be inside a containing [DDEConnect] context, otherwise it
does not know to which DDE server program to send its text.

For example:
[DDEConnect program=PCAuthorize&topic=GetBatches]
[DDESend]Tela00001031 1[/DDESend]
[DDESend]Tela00001031 2[/DDESend]
[/DDEConnect]

In this example, the DDE command “GetBatches from PCAuthorize” is
executed, and the results (a listing of all the batch information for batch #1

 176 • WebDNA

and batch #2) is displayed. Notice that the white space between
“Tela00001031” and “1” is actually a tab character, which is part of the
PCAuthorize specification.

Caution: DDE has complete access to all DDE-aware programs on your web
server. You can write a DDE context that can do damage to the machine or
retrieve secret information. However, remote visitors to your web site have
no way of executing their own DDE contexts remotely; they can only execute
DDE commands inside a template file you have saved on your web server’s
hard disk.

[DOS] CONTEXT
Syntax: [dos]batch file[/dos]

Result: Returns the results of the DOS-style batch file contained in the
context.

To embed the results of a DOS Batch file into one of your pages, insert a
DOS context into the template. The DOS program contained inside the
context is executed, and any returned value is displayed in place of the
context. Any [xxx] tags inside the context are first substituted for their real
values before the batch file is executed.

For example:
<pre>
[DOS]dir c:[/DOS]
</pre>

In this example, the DOS command “dir c:” is executed, and the results (a
listing of all the files at the root of C: drive) is displayed. The <pre> tags are
used to format the results more nicely in an HTML page.

Caution: DOS has complete access to your hard disk and all programs on
your web server. You can write a DOS context that erases the contents of
your hard disk. However, remote visitors to your web site have no way of
executing their own DOS contexts remotely; they can only execute DOS
commands inside a template file you have saved on your web server’s hard
disk.

[SHELL] CONTEXT
Syntax: [Shell]UNIX Shell Commands[/Shell]

 Programmer Guide • 177

Executes the UNIX shell commands contained in the context and displays
the results.

To embed the results of a shell command into one of your pages, put a Shell
context into a template. The shell commands contained inside the context
are executed, and any returned value is displayed in place of the context.
Any [xxx] tags inside the context are first substituted for their real values
before the shell command is executed.

For example, normally you would put the following text into a .TPL file on
your server and use a web browser to link to it:

<pre>
[Shell]ls -l[/Shell]
</pre>

In this example, the shell command “ls -l” is executed, and the results (a list
of all the files in the current directory) is displayed. The <pre> tags are used
to format the results in an HTML page. The user privileges are the same as
the WebDNA program itself (which is typically logged on as user nobody).

Caution! Shell has complete access to your hard disk and all
programs on your web server. You can write a Shell context to
erase the contents of your hard disk. However, remote visitors to
your web site have no way of executing their own Shell contexts
remotely. They can only execute shell commands inside a
template file that you have saved on your web server’s hard
disk.

[ELAPSEDTIME] TAG
Syntax: [ElapsedTime]

Placing [ElapsedTime] in your template displays the elapsed time (in 60ths of
a second) since the beginning of processing this page. Put one at the top of
a page, and another at the bottom to see how long the entire page takes to
process (subtract the 2 numbers to get the answer).

FLUSHCACHE COMMAND
Syntax: FlushCache

Result: Clears all cached templates from memory.

 178 • WebDNA

 Programmer Guide • 179

To flush WebDNA’s template cache, use a web browser to link to a URL
containing the FlushCache command. Whenever WebDNA receives a
FlushCache command, it immediately removes any “memorized” pages from
memory. Newer versions of any HTML or template files that have been
modified on disk are used the next time a browser links to those pages.

For example (normally you would link to a URL or form containing the
following information):

http://yourserver.com/xx.tpl?command=FlushCache

A confirmation message appears after flushing all the templates.

Other ways to send the same command include:

HTML Source Description
<a

href=”/WebCatalog/WebCatalog.acgi?com
mand=FlushCache”>

Hyperlink to
WebDNA CGI

 Hyperlink to
WebDNA plug-in
Action

<form method=”POST” action=”xx.tpl”>
 <input type=”hidden” name=”command”

value=”FlushCache”>
 <input type=”submit”>
 </form>

Form-based
command to
plug-in Action
(notice the
template is part
of the action)

[FLUSHDATABASES] TAG
Syntax: [FlushDatabases]

Writes all databases to disk and closes them all.

To flush WebDNA’s databases, use a web browser to link to a URL
containing the FlushDatabases command. Whenever WebDNA receives a
FlushDatabases command, it immediately saves any modified databases to
disk. Newer versions of any database files that have been modified on disk
will be used the next time a database is referenced.

http://yourserver.com/xx.tpl?command=FlushCache

 180 • WebDNA

For example, normally you would link to a URL or form containing the
following information:

http://yourserver.com/xx.tpl?command=FlushDatabases

A confirmation message appears after flushing all the databases.

Here are some other ways to send the same command:

HTML Source Description
 Hyperlink to WebDNA

plug-in Action

<form method=”POST” action=”xx.tpl”>
 <input type=”hidden” name=”command”

value=”FlushDatabases”>
 <input type=”submit”>
 </form>

Form-based command
to plug-in Action (notice
the template is part of
the action).

FLUSHDATABASES COMMAND
Syntax: FlushDatabases

Result: Writes all databases to disk and closes them all.

To flush WebDNA’s databases, use a web browser to link to a URL
containing the FlushDatabases command. Whenever WebDNA receives a
FlushDatabases command, it immediately saves any modified databases to
disk. Newer versions of any database files that have been modified on disk
will be used the next time a database is referenced.

For example (normally you would link to a URL or form containing the
following information):

http://yourserver.com/xx.tpl?command=FlushDatabases

A confirmation message appears after flushing all the databases.

Other ways to send the same command include:

HTML Source Description
 Hyperlink to

WebDNA plug-in

http://yourserver.com/xx.tpl?command=FlushDatabases
http://yourserver.com/xx.tpl?command=FlushDatabases

 Programmer Guide • 181

Action
<form method=”POST” action=”xx.tpl”>
 <input type=”hidden” name=”command”

value=”FlushDatabases”>
 <input type=”submit”>
 </form>

Form-based
command to
plug-in Action
(notice the
template is part
of the action)

[INTERPRET] CONTEXT
Syntax: [interpret]Any Text[/ interpret]

Result: Interprets the enclosed [xxx] values using the WebDNA interpreter.

To interpret [xxx] values stored in a database field, enclose them in an
[Interpret] context. For example, if you insert the text [date] into a field in a
database (text1, for instance), then when you display [text1] in a template it
only shows the literal text [date] - it does not try to interpret the contents of
the field. WebDNA does one level of interpretation; use the [Interpret] context
to force it to re-interpret the results multiple times.

A good example is a banner advertisement database: Assume you want to
create a list of advertisements to be displayed randomly at the top of every
page in your site. This functions correctly if the ads themselves don’t contain
any [xxx] tags. However, if you want to insert cart information into the banner
ad, you must use the [Interpret] context to tell the [Cart] variable to substitute
its real value.

For example:
BannerAds.db
AdNumber BannerHTML
1 Invoice
2

Review a sample template that incorrectly uses the database above to
randomly choose 1 item from the list and display the results at the top of a
page:

<html>
<body>
[search db=BannerAds.db&neAdNumberdata=0&
max=1&AdNumbersdir=ra&AdNumbersort=1]

 182 • WebDNA

[foundItems][BannerHTML][/foundItems]
[/search]
</body>
</html>

The problem here is that [BannerHTML] is indeed evaluated and displayed,
but it is incorrect because the [Random] tag inside the field hasn’t been
evaluated to its true value: .

The following sample template correctly uses the database above to
randomly choose one item from the list and display the results at the top of a
page:

<html>
<body>
[search db=BannerAds.db&neAdNumberdata=0
&max=1&AdNumbersdir=ra&AdNumbersort=1]
[foundItems][interpret][BannerHTML][/interpret][/foundItems]
[/search]
</body>
</html>

The results here are accurate: .

[OBJECT] CONTEXT
Syntax: [Object Parameters]Main Parameter[/Object]

Result: Executes the external Windows ActiveX control or Java class file,
and displays the text of the result.

To embed the results of an external function (which could be a Windows
ActiveX DLL or Java class file on any platform) into one of your pages, put an
Object context with appropriate parameters into a template. The parameters
are sent to the external module, and the results of the external call are
displayed as text in place of the context. Any [xxx] tags inside the context are
first substituted for their real values before the Object is executed.

For example, normally you would put the following text into a .TPL file on
your server and use a web browser to link to it:

[OBJECT objname=MS.CUSTOM[!]
[/!]&call=MyFunction¶m1=Hello¶m1type=text¶m2=2000¶m2ty

pe=num]
[/OBJECT]

 Programmer Guide • 183

The ActiveX control DLL “MS.CUSTOM” will be loaded and “MyFunction” will
be executed with the following parameters:

• Parameter 1: Hello Type: text

• Parameter 2: 2000 Type: num

Parameter Description

objname ActiveX: The name of the ActiveX control
Java: The name of the Java class file

call ActiveX: Name of function to call.
Java: Name of the method to call (Note: the method
must be able to receive “java/lang/String” and return
“java/lang/String”

type (Optional) The type of module to execute.
0 - ActiveX (Default)
1 - Java .class file

classpath (Required for Java) Location of the .class file and all
the supporting .jar files. Can contain multiple
locations separated by semicolons “;”. Only java
modules require this parameter.

Note: This is only used on Mac OS platforms and is
ignored in all the other platforms. If you want to set
the classpath for the other platforms, you have to
manually change the JavaClassPath preference in
the "WebCatalog Prefs" file, but make sure you
shutdown WebDNA before doing this.

Param1 (Optional) Value of the first parameter to be passed
into the ActiveX or Java function.
For boolean values, use 0 for FALSE and 1 for
TRUE

Param1Type (Required for each parameter) Data type of the first
parameter. Choose from bool, num, or text

Param2 (Optional) Value of the second parameter to be
passed into the ActiveX or Java function

Param2Type (Required for each parameter) Data type of the
second parameter

 184 • WebDNA

Parameter Description
second parameter

...ParamN (Optional) As many parameters as are necessary
may be passed into the ActiveX/Java function

...ParamNType (Required for each parameter) For each value
passed, you must define its data type

RAW COMMAND
Syntax: Raw

Result: Returns the “raw” contents of a template.

Sometimes you, or someone from technical support, needs to view the text of
a template file in its raw form without being processed by WebDNA. Usually
this is so you can see the WebDNA commands rather than the final resulting
HTML those WebDNA commands generate. WebDNA normally intercepts
URLs leading to template files and makes it impossible to “view the source”
of a WebDNA template.

The Raw command is provided for sites using Suffix Mapping to
automatically process all files ending in a particular extension. In this
scenario, it is impossible to link to the file directly to view the raw contents of
the file. While this is good because it does not allow the outside world to see
the contents of your pages, it can make site development difficult if you are
debugging a particular page remotely. The Raw command should be
protected with the Admin password so it is not available to everyone
accessing your site.

[REDIRECT] TAG
Syntax: [Redirect url=URL]

Placing [Redirect http://www.webdna.us/] in your template forces the
remote browser to immediately ‘jump’ to the new location specified, rather
than displaying whatever is in the template. Any other text in the template will
be ignored.

 Programmer Guide • 185

[RETURNRAW] CONTEXT
Syntax: [returnraw]HTTP/1.0 200 OK...[/returnraw]

Result: Returns the raw HTML within the tags, including all MIME headers.

The [ReturnRaw] context allows you to return HTML with custom MIME
headers. Normally, WebDNA returns a page using standard MIME headers.
However, there are situations where you may want to return something
different. An example is when you want to automatically re-direct a visitor to
another page without requiring them to click a hypertext link.

For example:
[returnraw]HTTP/1.0 302 Found
Location: http://www.webdna.us
[/returnraw]

When this WebDNA is encountered in a template file, WebDNA immediately
stops processing and returns the MIME headers and HTML contained within
the context. HTML found before or after the context is not returned. In this
example, the visitor is automatically redirected by the browser to the
alternate location specified. In this respect, it is similar to the [Authenticate]
tag, which immediate stops execution and returns.

Note that MIME headers normally require a linefeed (or carriage return /
linefeed combination) after each line. If you are creating a template on a
Macintosh, which normally places a carriage return by itself as the end-of-line
marker, you will need to past the linefeed manually, or change the document
type to DOS or UNIX.

The [ReturnRaw] context can be used to create custom authentication
schemes as well.

[SPAWN] CONTEXT
Syntax: [spawn]WebDNA text[/spawn]

Result: Creates a new thread to execute WebDNA simultaneously with the
current template.

To perform WebDNA simultaneously, place it inside a Spawn context. All
WebDNA inside the Spawn context begins to execute immediately, and the
remainder of the template is returned to the visiting browser immediately.

 186 • WebDNA

Note: The HTML output from within a Spawn context is never displayed to
the browser. While this may seem unhelpful at first, realize that the purpose
of Spawn is to allow you to execute very lengthy operations without forcing
the visitor to wait for them. The WebDNA in the spawned context could
update a database several minutes later, wait for a 15-second credit card
operation, create a WebDelivery file, or many other useful things.

For example:
Before the spawn [elapsedtime]

[Spawn]
-- Some WebDNA that takes a long time to finish
[Loop start=1&end=5000][ShowIf 1=1][/ShowIf][/Loop]
[/Spawn]
After the spawn [elapsedtime]

The example above yields:
Before the spawn 1
After the spawn 3

Notice that the elapsedtime is very small even though the loop inside the
spawn could take several seconds. This is because your web browser sees
the results of the template before the spawned WebDNA is finished.

[TCPCONNECT] CONTEXT
Syntax: [tcpconnect host=domain

name&port=number][tcpsend][/tcpconnect]

Result: Connects to a TCP port of another computer on the internet.

Required Tag Parameter: host=domain name (Name or IP address of the
machine to connect to. Do not insert http or ftp into the host text.
TCPConnect is a very low-level connection, and it does not understand these
protocols.)

Optional Tag Parameter: port=number (TCP port number to connect to. If
not specified, then 80 is assumed.)

To embed the results of a TCP session into one of your pages, insert a
TCPConnect context into a template, and place [TCPSend] contexts inside of
that. The TCPSend steps contained inside the context are executed, and any
returned value is displayed in place of the context. Any [xxx] tags inside the
context are first substituted for their real values before the TCPSend is
executed.

 Programmer Guide • 187

TCPConnect does nothing by itself; you must insert one or more [TCPSend]
contexts inside it to perform any real work. TCPConnect establishes a
connection to the TCP server program, and provides an environment for the
TCPSend contexts to do their work and return text results.

For example:
[TCPConnect host=www.webdna.us&port=80]
[TCPSend]GET / HTTP/1.0[UnURL]%0D%0A%0D%0A[/TCPSend]
[/TCPConnect]

In this example, the http command equivalent to the URL
“http://www.webdna.us/ ” is executed, and the results (the home page for
that site) are displayed. Notice the use of [UnURL] to send <Carriage
Return><LineFeed> <Carriage Return><LineFeed> as part of the TCPSend
text. If you do not send the correct sequence of 2 CR/LF characters, the
remote web server will never return any text, and the TCPSend will timeout
while waiting for a response.

[TCPSEND] CONTEXT
Syntax: [tcpsend]text[/tcpsend]

Result: Sends text to a TCP server program on a remote machine.

Optional Tag Parameters:

• end=text (Text to look for that indicates end of line.)

• skipheader=T - instructs the WebDNA engine to'strip' the MIME
headers from the result

Often [TCPSend end=%0D%0A] is used to look for <carriage return><line
feed> as the end of line indicator, as it is necessary when communicating
with email POP servers or FTP servers. This is not necessary for
communication with the http protocol because the remote server disconnects
automatically at the end of the session.

To embed the results of a TCP session into one of your pages, insert a
[TCPConnect] context into the template, and place [TCPSend] contexts
inside of that. The TCPSend steps contained inside the context are
executed, and any returned value is displayed in place of the context. Any
[xxx] tags inside the context are first substituted for their real values before
the TCPSend is executed.

 188 • WebDNA

TCPConnect does nothing by itself; you must insert one or more [TCPSend]
contexts inside it to perform any real work. TCPConnect establishes a
connection to the TCP server program, and provides an environment for the
TCPSend contexts to do their work and return text results.

For example:
[TCPConnect host=www.webdna.us&port=80]
[TCPSend]GET / HTTP/1.0[UnURL]%0D%0A%0D%0A[/TCPSend]
[/TCPConnect]

In this example, the http command equivalent to the URL
“http://www.webdna.us/” is executed, and the results (the home page for
that site) are displayed. Notice the use of [UnURL] to send <Carriage
Return><LineFeed> <Carriage Return><LineFeed> as part of the TCPSend
text. If you do not send the correct sequence of 2 CR/LF characters, the
remote web server will never return any text, and the TCPSend will timeout
while waiting for a response.

Using 'SKIPHEADER=T' in the [TCPSend] context will instruct the WebDNA
engine to'strip' the MIME headers from the result (assuming that you are
invoking an HTTP Get or Post).

For example:
A simple HTTP GET without the SKIPHEADER set to 'T'

[text]host=[listmimeheaders
name=host&exact=false][value][/listmimeheaders][/text]

[tcpconnect host=[host]][tcpsend]
GET [thisurl]?get=false HTTP/1.0
HOST: [host]

[/tcpsend][/tcpconnect]

Result:
HTTP/1.0 200 OK
Content-type: text/html
Content-Length: 29

Hello World!

 Programmer Guide • 189

With the 'SKIPHEADER=T' parameter...
[tcpconnect host=[host]][tcpsend skipheader=T]
GET [thisurl]?get=false HTTP/1.0
HOST: [host]

[/tcpsend][/tcpconnect]

Results:
Hello World!

[VERSION] TAG
Syntax: [Version]

Placing [Version] in your template displays the version of the currently
running WebDNA program or plug-in.

Browser Info

[BROWSERNAME] TAG
Syntax: [BrowserName]

Specifying [BrowserName] in your document displays the name of the remote
browser program running on the visitor’s computer.

Placing [BrowserName] in your template displays the name of the remote
browser program running on the visitor’s computer.

[GETCOOKIE] TAG
Syntax: [GetCookie name=cookieName]

Placing [GetCookie fred] in your template displays the value of the cookie
named “fred” that the remote browser has remembered. If no cookie of that

 190 • WebDNA

name exists, then nothing is returned. Use [ListCookies] to see all the
cookies your browser is sending.

[GETMIMEHEADER] TAG
Syntax: [GetMimeHeader name=headerName]

Placing [GetMimeHeader Accept-Language] in your template displays the
value of the MIME header called “Accept-Language,” which is a code
representing the human language that the viewer is able to read. Use
[ListMIMEHeaders] to see all the headers your browser is sending.

[IPADDRESS] TAG
Syntax: [IPAddress]

Placing [IPAddress] in your template will display the ip address of the remote
computer that the visitor is using to view your site. All sections of the IP
address are expanded to 3 digits, so that 207.67.2.14 will display as
207.067.002.014. This helps make partial comparisons inside [ShowIf] tags
work more easily.

[ISSECURECLIENT] TAG
Syntax: [IsSecureClient]

Note: This tag will be supported through version 4.0. It will be eliminated in
future versions.

Placing [IsSecureClient] in your template replaces the [IsSecureClient] tag
with “T” if the remote browser is capable of SSL (Secure Socket Layer)
connections, and “F” if not. As new browsers are released, you can control
which ones are reported as secure by changing the “Browser Info.txt” file to
indicate what level of HTML it supports, and whether or not it supports SSL.

[LISTCOOKIES] CONTEXT
Syntax: [listcookies][name][/listcookies]

Result: Lists all the cookies that are available to the current page from the
visitor’s browser.

 Programmer Guide • 191

Optional Tag Parameters:

• name − The name of the cookie to retrieve. This is either an exact
name or partial name depending upon the value of exact described
below.

• Exact − Whether the value used in name should match the cookie
name exactly or partially. Possible values are “T” (True) or “F” (False).
The default value is “T”.

Optional Context Parameters:

• name − The name of the cookie being listed

• value − The value of the cookie being listed.

• index − The index (starting with 1) of the cookies being listed.

Cookies are values that can be set in a visitors browser by the server in order
to save information that will identify or describe the visitor while they are
using your site. Cookies require the consent of the visitor to be set and
should not be relied upon unless so stated to your visitors. Cookies provide
an alternate way to store the cart value, for example that doesn’t require you
to pass that value through all your URL’s.

Consult an HTTP reference for more information on cookies.

For example:
The following are all the cookies available to this page:

[ListCookies]
[index],[name],[value]

[/ListCookies]

Setting Cookies
You set cookies by returning additional MIME header information to the
browser. This can be done currently using the [returnraw] context. The
following example sets a cookie whose name is “text” and whose value is
“abcd”.

For example:
[returnraw]HTTP/1.0 200 OK
Set-Cookie: text=abcd; expires=Wednesday, 01-Dec-1999
23:23:23 GMT; path=/; domain=www.yourdomain.com
Cookie set.
[/returnraw]

 192 • WebDNA

Note that you must set an expiration date and domain/path from which you
can retrieve the cookie as well. This example returns the text “Cookie Set”.
However, it is more likely that you’ll want to return and entire HTML template.
To do this, redirect the visitor at the same time you set the cookie.

[returnraw]HTTP/1.0 302 Found
Location: http://www.yourdomain.com/entry.html
Set-Cookie: text=abcd; expires=Wednesday, 01-Dec-1999
23:23:23 GMT; path=/; domain=www.yourdomain.com
[/returnraw]

MIME headers require a linefeed as a line separator (or carriage return /
linefeed combination). If you are using a text editor on the Macintosh you
must past a linefeed in after each line or set the file to a DOS or UNIX mode.

[LISTMIMEHEADERS] CONTEXT
Syntax: [listmimeheaders][name],[value][/listmimeheaders]

Result: Lists all the MIME headers that were used to get the current page.

Optional Tag Parameters:

• name − The name of the MIME header to list. This can be an exact or
partial name depending on the value of the exact parameter.

• exact − Possible values are “T” (True) or “F” (False). This parameter
determines whether the value of the name parameter must match
exactly or find a partial match. The default value (if this parameter is
not listed) is “T”.

Optional Context Tags:

• [name] − The name of the MIME header.

• [value] − The value of the MME header.

• [index] − The index number of the current MIME header (starting
with 1).

MIME headers contain technical information describing the HTML, and other
miscellaneous information being returned. Many different MIME headers
exist and it is beyond the scope of this document to describe them all. Refer
to an HTTP technical reference for more information.

Example 1:
The following are all the MIME headers available to this page:

http://www.yourdomain.com/entry.html

 Programmer Guide • 193

[listmimeheaders]
[index],[name],[value]

[/listmimeheaders]

Example 2:
Your web browser preferences show that your native language is:

[listmimeheaders name=HTTP_ACCEPT_LANGUAGE]
[value]
[/listmimeheaders]

Example 3:
The following are the values of all the MIME headers whose name begins with

“HTTP_ACCEPT”:

[ListMIMEHeaders name=HTTP_ACCEPT&exact=F]
[index],[value]

[/listmimeheaders]

[REFERRER] TAG
Syntax: [Referrer] or [Referer]

Placing [Referrer] in your template displays the URL of the referring page
that led to this one. This is a handy way to give visitors a “back up” button.

Note: This will not work if the previous page was a FORM
METHOD=”POST”.

[SETCOOKIE] TAG
Syntax: [SetCookie name=cookieName&value= cookieValue&expires

=expireDate&path= /&domain= www.yourdomain.com]

Placing a [SetCookie] tag into a template causes the remote browser to
create or replace a cookie of that name in its local list of cookies. You can
use [GetCookie] or [ListCookies] later to retrieve that value from the remote
browser. The expiration date of the cookie must be of the form Wednesday,
09-Nov-1999 23:12:40 GMT. The domain must be the name of your web
server, otherwise the browser will not provide the cookie information.

Example:
[SETCOOKIE name=Visits&value=12&expires=Wednesday, 09-Nov-1999

23:12:40 GMT&path=/&domain=www.webdns.us]

 194 • WebDNA

Or one that expires 7 days from today (the +05:00:00 handles the US East
Coast time difference from GMT):

[SETCOOKIE name=cookieName&value=sample&expires =[format
days_to_date %A, %d-%b-%Y][math]{[date]}+7[/math][/format]
[math time]{[time]}+{05:00:00}[/math]
GMT&path=/&domain=www.yourserver.com]

Note: If you do not specify an expires parameter, then the cookie becomes
a “session cookie,” expiring automatically when the browser quits.

[SETMIMEHEADER] TAG
Syntax: [SetMIMEHeader name=headerName&value=headerValue]

Placing a [SetMIMEHeader] tag into a template causes WebDNA to add a
new MIME header to the outgoing HTML text for that page. MIME headers
are normally used to create redirect requests and cookies. WebDNA already
has special tags for generating redirects and cookies, but in the future you
may need to create MIME headers for other purposes.

XML

[XMLPARSE] CONTEXT
New in 5.0
Syntax: [xmlparse var=...&source=...]<optional inline XML
content>[/xmlparse]
Result: Enable the WebDNA programmer to input XML data into a WebDNA
variable, after which any part of the XML structure can be readily examined
using the new WebDNA XML contexts.

Optional Tag Parameters:

• var - The variable name you specify to represent the XML parsed
object.

• source - A URL reference to an external XML file. If 'source' is
provided, the content between the [xmlparse...] and [/xmlparse] tags
is ignored.

 Programmer Guide • 195

Now lets parse this file into a WebDNA variable called 'xml_var1'...

We use the following code...
[xmlparse var=xml_var1][include

file=example1.xml][/xmlparse]

Note that the [include] tag was used to place the xml file contents between
the xmlparse tags. We could just as easily 'pasted' the xml contents there as
well.

Internally, the WebDNA engine 'saves' this parsed instance as an internal
variable named 'xml_var1'. This saved instance can then be referenced in
the other WebDNA XML contexts.

Results...

If the parse succeeded, you should not see any error messages between the
two lines shown above.

The default behavior of this context is to iterate the child XML nodes of a
parent node. The location of the parent node, in the xml 'tree', is determined
by the 'path' parameter. If a path parameter is not provided, then the child
nodes of the ' ref 's root are iterated.

The path parameter can take three different forms: 'named:', 'indexed:', or
'xpath:'.

- The 'named:' method expresses a literal path to the parent node, i.e.
'path=named:CATALOG/CD(n)'. If there are more than one similarly named
'sibling' nodes, then the '(n)' part specifies which node to select as part of the
path.

- The 'indexed:' method expresses an numerical 'step' wise path to the
parent node, i.e. 'path=indexed:1/2/3'. This example could be expressed as:
'The third child node of the second child node of the first child node of the
xml root'.

- The 'xpath:' method is an XPath 'expression' that evaluates to a collection
of nodes in the XML tree. In this case, the iterated nodes are those of the

 196 • WebDNA

resulting 'collection' of nodes. This is a bit different from the 'named' and
'indexed' method in that the collection of node are not the 'child' nodes of a
given 'parent' node. This is the most powerful method for selecting XML
nodes. There are several online 'xpath' tutorials that you can visit that will
help you develop your XPath skills.

We will be using the 'named' method in the next few tutorial pages.

Now lets use the [xmlnodes] context to iterate the xml child nodes of the
root xml node of the 'example1.xml' document.

The code is as follows...
[xmlparse var=xml_var1][include

file=example1.xml][/xmlparse]

[xmlnodes ref=xml_var1]
[name]=[value]

[/xmlnodes]

Results....
CATALOG=

We see that the 'CATALOG' node is the only child node from the root of the
xml file. Notice that the 'value' is empty. This is because the 'CATALOG'
node has no value, and is actually a 'container' node for other xml nodes. So
a 'value' will only be displayed for a 'leaf' xml node, i.e.

JOHN

In this case, [name] would evaluate to 'FIRSTNAME' and [value] would be
'JOHN'.

Lets dive a little deeper into the xml file and iterate the 'child' nodes of the
root 'catalog' node...

We now use...
[xmlparse var=xml_var1][include

file=example1.xml][/xmlparse]

[xmlnodes ref=xml_var1&path=named:Catalog]
[name]=[value]

[/xmlnodes]

 Programmer Guide • 197

Results....

CD=

CD=
CD=
CD=
CD=

We see that we have iterated all the 'CD' child nodes of the 'Catalog' parent
node. Again, none of the resulting child nodes contain a value as they are all
'container' nodes.

You can embed any number of [xmlnodes] contexts within each other. Lets
do this to iterate the child nodes of all the 'CD' nodes...

We use...
[xmlparse var=xml_var1][include

file=example1.xml][/xmlparse]

[xmlnodes ref=xml_var1&path=named:Catalog]
[name] - [index]

 [xmlnodes]
 - [name]=[value]

 [/xmlnodes]
[/xmlnodes]

Results....

CD - 1
- TITLE=Empire Burlesque
- ARTIST=Bob Dylan
- COUNTRY=USA
- COMPANY=Columbia
- PRICE=10.90
- YEAR=1985
CD - 2
- TITLE=Hide your heart
- ARTIST=Bonnie Tylor
- COUNTRY=UK
- COMPANY=CBS Records
- PRICE=9.90
- YEAR=1988

 198 • WebDNA

CD - 3
- TITLE=Greatest Hits
- ARTIST=Dolly Parton
- COUNTRY=USA
- COMPANY=RCA
- PRICE=9.90
- YEAR=1982
CD - 4
- TITLE=Still got the blues
- ARTIST=Gary More
- COUNTRY=UK
- COMPANY=Virgin records
- PRICE=10.20
- YEAR=1990

Now we are getting some interesting results. Note that the 'inner' xmlnodes
context did not need a 'ref' parameter. This is because the inner xmlnodes
context inherited the outer xmlnodes' current iterated node. Also notice that
the inner xmlnodes context did not use a 'path' parameter. So it uses the
'root' path of the outer xmlnodes' current iterated node.

Did you also notice the use of the [index] tag in the outer xmlnodes context?
As with most 'iterative' WebDNA contexts, the [index] tag resolves to the
current iteration 'count'.

Lets refine the named path parameter to go directly to a particular 'CD' node.

With a minor change to the 'path' parameter, we can retrieve all the child
nodes of the fifth 'CD' node......

[xmlparse var=xml_var1][include
file=example1.xml][/xmlparse]

[xmlnodes ref=xml_var1&path=named:Catalog/CD(5)]
[name]=[value]

[/xmlnodes]

Results....

TITLE=Eros
ARTIST=Eros Ramazzotti
COUNTRY=EU
COMPANY=BMG

 Programmer Guide • 199

PRICE=9.90
YEAR=1997

Using the 'name' parameter we can filter the results to display only the
'TITLE' node of the fifth 'CD' node......

[xmlparse var=xml_var1][include
file=example1.xml][/xmlparse]

[xmlnodes ref=xml_var1&path=named:Catalog/CD(5)&name=TITLE]
[name]=[value]

[/xmlnodes]

Results....
TITLE=Eros

Using the 'name' and 'exact' parameters, we can filter the results to display
only those nodes, of the fifth 'CD' node, where the node name matches a
given sub-string, 'CO'......

[xmlparse var=xml_var1][include
file=example1.xml][/xmlparse]

[xmlnodes

ref=xml_var1&path=named:Catalog/CD(5)&name=CO&exact=F]
[name]=[value]

[/xmlnodes]

Results....

COUNTRY=EU
COMPANY=BMG

[XMLNODES] CONTEXT
New in 5.0
Syntax: [xmlnodes ref=...&path=...&name=...&exact=T/F]

<WebDNA>[/xmlnodes]

Result: Lists all the form variables and parameters passed to the current
page.

 200 • WebDNA

Optional Tag Parameters:

• ref - Reference to an xml parsed object variable. If this parameter is
not provided, then it is assumed that there is an 'outer' [xmlnodes]
context from which to reference a particular XML node. (This is
explained further on in this tutorial).

• path - Depending on which path method is used (see below), this will
either be a path to the parent xml element (node) from which to iterate
the child elements (nodes), or a path 'expression' representing a
collection of XML nodes. If a path is not provided, then the child
nodes of the 'ref' node will be iterated

• name - A string used to filter the resulting xml nodes. Only the xml
nodes that match the 'name' string will be iterated.

• exact - Used with the 'name' parameter. Either 'T' or 'F'. Specifies
whether the 'name' parameter is a 'whole' string match or a 'sub-
string' match.

Optional Context Tags:

• [name] - The name of the current iterated XML node.

• [value] - The value of the current iterated XML node. Will be empty if
the node is a 'container' node, i.e. contains other XML nodes.

• [index] - The 'count' of the current iterated node.

• [numfound] - The total 'count' of iterated nodes.

• [content] - The 'raw' xml content of the current node.

• [iscontainer] - 'T' if the current node contains other XML nodes.

This context is used to retrieve the contents of the specific node. The 'path'
parameter is used to locate the node. As with the [XMLNodes] context, the
'path' parameter has three modes; 'named:', 'indexed:', and 'xpath:'.
[XMLNode] can also be used to persist a 'pointer' to a specific node. This
reference can then be used in subsequent calls to other XML contexts.

Lets use the XMLNode context to retrieve the TITLE information of the third
CD node....

Code used...
[xmlparse var=xml_var1][include

file=example1.xml][/xmlparse]

 Programmer Guide • 201

[xmlnode ref=xml_var1&path=indexed:1/3/1]
[name]=[value]

[/xmlnode]

You'll notice that we used the 'indexed' path method. This is because we
have explicit knowledge of the XML file, and can there for use the indexed
method to jump quickly to the desired XML node.

Results...
TITLE=Greatest Hits

Now lets use the [XMLNode] context to persist a reference to the third 'CD'
node, then use that reference in an XMLNodes context to retrieve the child
nodes...

Code used...
[xmlparse var=xml_var1][include

file=example1.xml][/xmlparse]

[xmlnode

ref=xml_var1&path=indexed:1/3&var=xml_CD3][/xmlnode]

[xmlnodes ref=xml_CD3]
[name]=[value]

[/xmlnodes]

Results...

TITLE=Greatest Hits
ARTIST=Dolly Parton
COUNTRY=USA
COMPANY=RCA
PRICE=9.90
YEAR=1982

 [XMLNODESATTRIBUTES] CONTEXT
New in 5.0
Syntax: [XMLNodeAttributes ref=...&path=...]<WebDNA>

[/XMLNodeAttributes]

 202 • WebDNA

Result: This context is used to iterate the attributes of a specific XML node.
The 'path' parameter is used to locate the node. As with the [XMLNodes]
context, the 'path' parameter has three modes; 'named:', 'indexed:', and
'xpath:'.

Optional Tag Parameters:

• ref - Reference to an xml object variable. If this parameter is not
provided, then it is assumed that there is an 'outer' [xmlnode/s]
context from which to reference a particular XML node.

• path - Path to the desired XML node. If an XPath expression is used,
it should evaluate to a single node.

Optional Context Tags:

• [name] - The name of the current iterated XML node attribute.

• [value] - The value of the current iterated XML node attribute.

• [index] - The 'count' of the current iterated attribute.

• [numfound] - The total 'count' of iterated attributes.

Lets use the [XMLNodeAttributes] context to retrieve the attributes of the
first CD node...

[xmlparse var=xml_var1][include

file=example1.xml][/xmlparse]

Attributes for the 'CD' node:

[xmlnode ref=xml_var1&path=indexed:1/1]
[content]
[/xmlnode]
Are...

[xmlnodeattributes ref=xml_var1&path=indexed:1/1]
[name]=[value]

[/xmlnodeattributes]

Results...

Attributes for the 'CD' node:

 Programmer Guide • 203

Bob Dylan
USA
Columbia
10.90
1985

Are...
id=123
status=instock

To simplify the code, we could place the [XmlNodeAttributes] context

'inside' of the [XMLNode] context. In this case, we will not need to

supply the 'path' or 'ref' parameters to [XmlNodeAttributes], since it

will use the 'implied' XML node in the outer [XMLNode] context.

We use...
[xmlparse var=xml_var1][include

file=example1.xml][/xmlparse]

Attributes for the 'CD' node:
[xmlnode ref=xml_var1&path=indexed:1/1]
[content]
Are...

[xmlnodeattributes]
[name]=[value]

[/xmlnodeattributes]
[/xmlnode]

Results...

Attributes for the 'CD' node:

Bob Dylan
USA

 204 • WebDNA

Columbia
10.90
1985

Are...
id=123
status=instock

[XSL] CONTEXT
New in 5.0
Syntax: [xsl var=...&source=...][/xmlparse]

Result: Enables the WebDNA programmer to compile and apply XSL style
sheets to XML data, allowing the programmer to query and render XML data
as they see fit.

Optional Tag Parameters:

var - The variable name you specify to represent the XSL parsed object.

source - A URL reference to an external XSL file. If 'source' is provided, the
content between the [xsl...] and [/xsl] tags is ignored.

This will explain how to use the new WebDNA XSL/XSLT contexts. This
assumes the user is familiar with the WebDNA language.

It is recommended that you view 'XML Contexts' before continuing with this.

Also...
If you plan on using the [XSL] or [XSLT] WebDNA contexts, you will need to
become familiar with the XPath and XSLT languages:

XSLT is a language for transforming XML documents into other XML
documents.

XPath is a language for defining parts of an XML document.

There are several online tutorials that will help. Just use your favorite search
engine and search for 'XSL XSLT XPATH Tutorials'.

 Programmer Guide • 205

These new contexts enable the WebDNA programmer to compile and apply
XSL style sheets to XML data, allowing the programmer to query and render
XML data as they see fit.

[XSL]

You can pre-compile XML style sheet code into a WebDNA variable, and
then apply the XSL object to XML data via the XSLT context.

Compile XSL

Lets compile some XSL source into a WebDNA variable called 'xsl_var1'...

We use the following code...

[xsl var=xsl_var1]
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
<html>
<body>
<h2>My CD Collection</h2>
<table border="1">
<tr bgcolor="#9acd32">
<th>Title</th>
<th>Artist</th>
</tr>
<xsl:for-each select="CATALOG/CD">
<tr>
<td><xsl:value-of select="TITLE"/></td>
<td><xsl:value-of select="ARTIST"/></td>
</tr>
</xsl:for-each>
</table>
</body>
</html>
</xsl:template>
</xsl:stylesheet>
[/xsl]

Internally, the WebDNA engine 'saves' this compiled instance as an internal
variable named 'xsl_var1'. This saved instance can then be referenced when
using the XSLT context.

Results...

It the operation succeeded, you should not see any error messages between
the two lines shown above.

[XSLT] CONTEXT
New in 5.0
Syntax: [XSLT xslref=...(or xslsource=...)&xmlsource=][/XSLT]

Result: The [XSLT] Context allows the WebDNA programmer to 'apply' an
XSL style sheet to an XML document and thus 'transform' the XML data into
any format the programmer desires (usually HTML).

Optional Tag Parameters:

xslref - named reference to a previously compiled block of XSL source.

xslsource - URL path to an external XSL document. This is an alternative to
using the xslref parameter. Meaning that it is possible to use the [XSLT]
context without having used the [XSL] context to pre-compile XSL source
code. However, if you plan to use the same XSL code several times
throughout the template, then it would be more efficient to compile the XSL
source code once, using [XSL], then just use the XSL object reference when
needed.

xmlsource - URL reference to an external XML document on which to apply
the XSL transformation. If this parameter is supplied, then any in-line XML
code that exists between the [XSLT] tags will be ignored.

Now that you know how to compile and persist XSL code, lets take a look at
the XSLT context.

Lets use the previous XSL example to compile XSL code and then apply it to
an XML document...

 206 • WebDNA

 Programmer Guide • 207

Example - Select all the 'CD' nodes in the example1.xml XML document and
transform the results into an HTML table, with the 'text' data of each CD node
tree displayed in the table rows.

Here is the code...
[xsl var=xsl_var1]
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
<html>
<body>
<h2>My CD Collection</h2>
<table border="1">
<tr bgcolor="#9acd32">
<th>Title</th>
<th>Artist</th>
</tr>
<xsl:for-each select="CATALOG/CD">
<tr>
<td><xsl:value-of select="TITLE"/></td>
<td><xsl:value-of select="ARTIST"/></td>
</tr>
</xsl:for-each>
</table>
</body>
</html>
</xsl:template>
</xsl:stylesheet>
[/xsl]

[xslt xslref=xsl_var1][include file=example1.xml][/xslt]

Results...

My CD Collection

Title Artist
Empire Burlesque Bob Dylan
Hide your heart Bonnie Tylor
Greatest Hits Dolly Parton
Still got the blues Gary More
Eros Eros Ramazzotti
One night only Bee Gees

 208 • WebDNA

Sylvias Mother Dr.Hook
Maggie May Rod Stewart
Romanza Andrea Bocelli
When a man loves a woman Percy Sledge
Black angel Savage Rose
1999 Grammy Nominees Many
For the good times Kenny Rogers
Big Willie style Will Smith
Tupelo Honey Van Morrison
Soulsville Jorn Hoel
The very best of Cat Stevens
Stop Sam Brown
Bridge of Spies T`Pau
Private Dancer Tina Turner
Midt om natten Kim Larsen
Pavarotti Gala Concert Luciano Pavarotti

The dock of the bay Otis Redding
Picture book Simply Red
Red The Communards
Unchain my heart Joe Cocker

This is a pretty simple table, but it should give you an idea of what you can
do with XSL(T).

Here is the same example, but without using the XSL context to pre-compile
the in-line XSL code. Instead, a URL reference is made to an external xsl file,
which happens to match the XSL code block above. It also uses the
'xmlsource' parameter to reference an external xml file to transform.

Here is the source...
[!] build the URL path to this lab folder [/!]
[text]host=[listmimeheaders

name=HOST&exact=F][value][/listmimeheaders][/text]
[text]path=[url][listpath

pathonly=T&path=[thisurl]][name]/[/listpath][/url][/text
]

 Programmer Guide • 209

[xslt
xslsource=http://[host]/[path]example1.xsl&xmlsource=htt
p://[host]/[path]example1.xml][/xslt]

Results (should be the same as above)...

My CD Collection

Title Artist
Empire Burlesque Bob Dylan
Hide your heart Bonnie Tylor
Greatest Hits Dolly Parton
Still got the blues Gary More
Eros Eros Ramazzotti
One night only Bee Gees
Sylvias Mother Dr.Hook
Maggie May Rod Stewart
Romanza Andrea Bocelli
When a man loves a woman Percy Sledge
Black angel Savage Rose
1999 Grammy Nominees Many
For the good times Kenny Rogers
Big Willie style Will Smith
Tupelo Honey Van Morrison
Soulsville Jorn Hoel
The very best of Cat Stevens
Stop Sam Brown
Bridge of Spies T`Pau
Private Dancer Tina Turner
Midt om natten Kim Larsen
Pavarotti Gala Concert Luciano Pavarotti

The dock of the bay Otis Redding
Picture book Simply Red
Red The Communards
Unchain my heart Joe Cocker

 210 • WebDNA

This xsl example will display all the CD 'Titles' and 'Artists' and add a pink
background-color to the artist column WHEN the price of the cd is higher
than 10.

Here is the code...
[xsl var=xsl_var1]
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
<html>
<body>
<h2>My CD Collection</h2>
<table border="1">
<tr bgcolor="#9acd32">
<th>Title</th>
<th>Artist</th>
</tr>
<xsl:for-each select="CATALOG/CD">
<tr>
<td><xsl:value-of select="TITLE"/></td>
<xsl:choose>
<xsl:when test="PRICE>'10'">
<td bgcolor="#ff00ff">
<xsl:value-of select="ARTIST"/></td>
</xsl:when>
<xsl:otherwise>
<td><xsl:value-of select="ARTIST"/></td>
</xsl:otherwise>
</xsl:choose>
</tr>
</xsl:for-each>
</table>
</body>
</html>
</xsl:template>
</xsl:stylesheet>
[/xsl]

[xslt xslref=xsl_var1][include file=example1.xml][/xslt]

Results...
My CD Collection

Title Artist
Empire Burlesque Bob Dylan

 Programmer Guide • 211

Hide your heart Bonnie Tylor
Greatest Hits Dolly Parton
Still got the blues Gary More
Eros Eros Ramazzotti
One night only Bee Gees
Sylvias Mother Dr.Hook
Maggie May Rod Stewart
Romanza Andrea Bocelli
When a man loves a woman Percy Sledge
Black angel Savage Rose
1999 Grammy Nominees Many
For the good times Kenny Rogers
Big Willie style Will Smith
Tupelo Honey Van Morrison
Soulsville Jorn Hoel
The very best of Cat Stevens
Stop Sam Brown
Bridge of Spies T`Pau
Private Dancer Tina Turner
Midt om natten Kim Larsen
Pavarotti Gala Concert Luciano Pavarotti

The dock of the bay Otis Redding
Picture book Simply Red
Red The Communards
Unchain my heart Joe Cocker

This example will display all the CD 'Titles' and 'Artists' sorting them by artist.

Here is the code...
[xsl var=xsl_var1]
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">

 212 • WebDNA

<html>
<body>
<h2>My CD Collection</h2>
<table border="1">
<tr bgcolor="#9acd32">
<th>Title</th>
<th>Artist</th>
</tr>
<xsl:for-each select="CATALOG/CD">
<xsl:sort select="ARTIST"/>
<tr>
<td><xsl:value-of select="TITLE"/></td>
<td><xsl:value-of select="ARTIST"/></td>
</tr>
</xsl:for-each>
</table>
</body>
</html>
</xsl:template>
</xsl:stylesheet>
[/xsl]

[xslt xslref=xsl_var1][include file=example1.xml][/xslt]

Results...
My CD Collection

Title Artist
Romanza Andrea Bocelli
One night only Bee Gees
Empire Burlesque Bob Dylan
Hide your heart Bonnie Tylor
The very best of Cat Stevens
Greatest Hits Dolly Parton
Sylvias Mother Dr.Hook
Eros Eros Ramazzotti
Still got the blues Gary More
Unchain my heart Joe Cocker
Soulsville Jorn Hoel
For the good times Kenny Rogers
Midt om natten Kim Larsen
Pavarotti Gala Concert Luciano Pavarotti

1999 Grammy Nominees Many

 Programmer Guide • 213

The dock of the bay Otis Redding
When a man loves a woman Percy Sledge
Maggie May Rod Stewart
Stop Sam Brown
Black angel Savage Rose
Picture book Simply Red
Bridge of Spies T`Pau
Red The Communards
Private Dancer Tina Turner
Tupelo Honey Van Morrison
Big Willie style Will Smith

Append XML data to a database

In this example we use XSLT to generate WebDNA [replace] code to
replace/append XML data to a WebDNA database. It is a little tricky
embedding the WebDNA into the XSL code, but it can be done.

Here is the code...
[xsl var=xsl_var1]

[!]
[/!]%5Breplace

db=music.db[url]&[/url]eqTITLEdata=[url]&[/url]append=T%
5D[!]

[/!]TITLE=[url]&[/url][!]
[/!]ARTIST=%5B/replace%5D

[/xsl]

[text]result=[unurl][xslt xslref=xsl_var1][include

file=example1.xml][/xslt][/unurl][/text]

The XSLT operation produced the following WebDNA code...
[result]

 214 • WebDNA

We then use the interpret context to 'parse' WebDNA code. And use the
search context to confirm that the entries where added.

[!]clear out the database entries[/!]
[delete db=music.db&neTITLEdata=[blank]]

[interpret]
[result]
[/interpret]

[search db=music.db&neTITLEdata=[blank]]

Found [numfound] CD entries in the music database.

[founditems]
[TITLE] - [ARTIST]

[/founditems]
[/search]

[closedatabase db=music.db]

Results...

The XSLT operation produced the following WebDNA code...

[replace db=music.db&eqTITLEdata=Empire

Burlesque&append=T]TITLE=Empire Burlesque&ARTIST=Bob
Dylan[/replace]

[replace db=music.db&eqTITLEdata=Hide your
heart&append=T]TITLE=Hide your heart&ARTIST=Bonnie
Tylor[/replace]

[replace db=music.db&eqTITLEdata=Greatest
Hits&append=T]TITLE=Greatest Hits&ARTIST=Dolly
Parton[/replace]

[replace db=music.db&eqTITLEdata=Still got the
blues&append=T]TITLE=Still got the blues&ARTIST=Gary
More[/replace]

 Programmer Guide • 215

[replace
db=music.db&eqTITLEdata=Eros&append=T]TITLE=Eros&ARTIST=
Eros Ramazzotti[/replace]

[replace db=music.db&eqTITLEdata=One night
only&append=T]TITLE=One night only&ARTIST=Bee
Gees[/replace]

[replace db=music.db&eqTITLEdata=Sylvias
Mother&append=T]TITLE=Sylvias
Mother&ARTIST=Dr.Hook[/replace]

[replace db=music.db&eqTITLEdata=Maggie
May&append=T]TITLE=Maggie May&ARTIST=Rod
Stewart[/replace]

[replace
db=music.db&eqTITLEdata=Romanza&append=T]TITLE=Romanza&A
RTIST=Andrea Bocelli[/replace]

[replace db=music.db&eqTITLEdata=When a man loves a
woman&append=T]TITLE=When a man loves a
woman&ARTIST=Percy Sledge[/replace]

[replace db=music.db&eqTITLEdata=Black
angel&append=T]TITLE=Black angel&ARTIST=Savage
Rose[/replace]

[replace db=music.db&eqTITLEdata=1999 Grammy
Nominees&append=T]TITLE=1999 Grammy
Nominees&ARTIST=Many[/replace]

[replace db=music.db&eqTITLEdata=For the good
times&append=T]TITLE=For the good times&ARTIST=Kenny
Rogers[/replace]

[replace db=music.db&eqTITLEdata=Big Willie
style&append=T]TITLE=Big Willie style&ARTIST=Will
Smith[/replace]

[replace db=music.db&eqTITLEdata=Tupelo
Honey&append=T]TITLE=Tupelo Honey&ARTIST=Van
Morrison[/replace]

[replace
db=music.db&eqTITLEdata=Soulsville&append=T]TITLE=Soulsv
ille&ARTIST=Jorn Hoel[/replace]

[replace db=music.db&eqTITLEdata=The very best
of&append=T]TITLE=The very best of&ARTIST=Cat
Stevens[/replace]

[replace
db=music.db&eqTITLEdata=Stop&append=T]TITLE=Stop&ARTIST=
Sam Brown[/replace]

[replace db=music.db&eqTITLEdata=Bridge of
Spies&append=T]TITLE=Bridge of
Spies&ARTIST=T`Pau[/replace]

[replace db=music.db&eqTITLEdata=Private
Dancer&append=T]TITLE=Private Dancer&ARTIST=Tina
Turner[/replace]

 216 • WebDNA

[replace db=music.db&eqTITLEdata=Midt om
natten&append=T]TITLE=Midt om natten&ARTIST=Kim
Larsen[/replace]

[replace db=music.db&eqTITLEdata=Pavarotti Gala
Concert&append=T]TITLE=Pavarotti Gala
Concert&ARTIST=Luciano Pavarotti[/replace]

[replace db=music.db&eqTITLEdata=The dock of the
bay&append=T]TITLE=The dock of the bay&ARTIST=Otis
Redding[/replace]

[replace db=music.db&eqTITLEdata=Picture
book&append=T]TITLE=Picture book&ARTIST=Simply
Red[/replace]

[replace
db=music.db&eqTITLEdata=Red&append=T]TITLE=Red&ARTIST=Th
e Communards[/replace]

[replace db=music.db&eqTITLEdata=Unchain my
heart&append=T]TITLE=Unchain my heart&ARTIST=Joe
Cocker[/replace]

We then use the interpret context to 'parse' WebDNA code. And use the
search context to confirm that the entries where added.

Found 26 CD entries in the music database.

Bridge of Spies - T`Pau
The dock of the bay - Otis Redding
Black angel - Savage Rose
The very best of - Cat Stevens
Unchain my heart - Joe Cocker
Romanza - Andrea Bocelli
Midt om natten - Kim Larsen
Eros - Eros Ramazzotti
Red - The Communards
For the good times - Kenny Rogers
Soulsville - Jorn Hoel
Big Willie style - Will Smith
Maggie May - Rod Stewart
Stop - Sam Brown
Still got the blues - Gary More
Private Dancer - Tina Turner
When a man loves a woman - Percy Sledge
Pavarotti Gala Concert - Luciano Pavarotti
Hide your heart - Bonnie Tylor
Picture book - Simply Red
1999 Grammy Nominees - Many
One night only - Bee Gees
Empire Burlesque - Bob Dylan

 Programmer Guide • 217

Greatest Hits - Dolly Parton
Sylvias Mother - Dr.Hook
Tupelo Honey - Van Morrison

Miscellaneous

[ARRAYSET] CONTEXT
New in 5.0
Syntax: [arrayset name=…&dim=…]<WebDNA that resolves to array

element assignments>[/arrayset]

Result: The array context will allow the WebDNA programmer to create an
array data object with up to five dimensions.

Parameters:

• Name - The variable name you specify to represent the array object.

• Dim - Comma delimited series of numbers representing the array
dimension sizes, i.e. '3,3,3', which would represent a 3x3x3
dimensioned array.

To create a three-dimensional array, insert a [arrayset] context into a
template.

For example:
[arrayset name=myarray&dim=2,2,2]
(1,1,1)=aaa&(1,1,2)=aab&(1,2,1)=aba&(1,2,2)=abb
[/arrayset]

This creates an array, called 'myarray', that will persist for the duration of the
template. Note that the 'index=value' pairs within the [arrayset] tags are
optional when creating a new array. Array indices can be assigned at any
time.

When the 'dim' parameter is supplied with the arrayset context, it implies that
this will be a new array object. Subsequent calls to arrayset, using the same
variable name (and without using the ‘dim’ parameter, imply new index
assignments to an existing array object.

So after we have created the 'myarray' object using the line shown above, we
can assign index value at a later time using:

 218 • WebDNA

[arrayset name=myarray](2,2,2)=xxx&(2,2,2)=zzz[/arrayset]

 [ARRAYGET] CONTEXT
New in 5.0

Once the array has been created, and index assignments have been made,
the array index values can be retrieved in the following ways:

Using the [ArrayGet] context to retrieve several index values...

[arrayget name=myarray]
[loop start=1&end=2]
 [loop start=1&end=2]
 [loop start=1&end=2]
 Index [::::index],[::index],[index] =

([::::index],[::index],[index])

 [/loop]
 [/loop]
[/loop]
[/arrayget]

 [ArrayGet] takes just one parameter; 'name', in which you place an existing
array variable name. The (a,b,c,d,e) patterns evaluate to the corresponding
index values. These patterns can be intermingled with other text, as shown.

Index 1,1,1 = 1-1-1
Index 1,1,2 = 1-1-2
Index 1,2,1 = 1-2-1
Index 1,2,2 = 1-2-2
Index 2,1,1 = 2-1-1
Index 2,1,2 = 2-1-2
Index 2,2,1 = 2-2-1
Index 2,2,2 = 2-2-2

[NumDims] Tag

You can use the [NumDims] tag to retrieve the number of dimensions for an
array. For example:

 Programmer Guide • 219

[ArraySet name=array_1&dim=3,3,10][/ArraySet]

array_1 contains [ArrayGet name=array_1][numdims][/ArrayGet]

dimensions.

Results:
array_1 contains 3 dimensions.

You can also use the 'array name' global tag to retrieve the number of
dimension in a named array object. Here is the code:

[ArraySet name=array_1&dim=3,3,10][/ArraySet]

array_1 contains [array_1(numdims)] dimensions.

Results:
array_1 contains 3 dimensions.

[DimSize_] Tag

The [DimSize_] tag is used to retrive the size of a given array dimension.
Example:

[ArraySet name=array_1&dim=3,4,5][/ArraySet]

[ArrayGet name=array_1]
array_1 has [NumDims] dimensions:

[loop start=1&end=[NumDims]]
Dimension [index] has

[interpret][DimSize_[index]][/interpret] indexes.

[/loop]
[/ArrayGet]

Results:
array_1 has 3 dimensions:
Dimension 1 has 3 indexes.
Dimension 2 has 4 indexes.
Dimension 3 has 5 indexes.

 220 • WebDNA

And, again, you can access the dimension sizes using the global 'array
name' tag, as follows:

[ArraySet name=array_1&dim=3,4,5][/ArraySet]

array_1 has [array_1(NumDims)] dimensions:

[loop start=1&end=[array_1(NumDims)]]
Dimension [index] has

[interpret][array_1(DimSize_[index]])][/interpret]
indexes.

[/loop]

Results:
array_1 has 3 dimensions:
Dimension 1 has 3 indexes.
Dimension 2 has 4 indexes.
Dimension 3 has 5 indexes.

 [FORMVARIABLES] CONTEXT
Syntax: [formvariables]text and tags to loop through[/formvariables]

Result: Lists all the form variables and parameters passed to the current
page.

Optional Tag Parameters:

• name=variablename − The full or partial name of the variables to list.

• exact=Boolean − Valid values are “T” or “F” (true or false). If
exact=T, then variablename must exactly match (case insensitive) the
incoming form variables. If exact=F, then the incoming variable name
must only contain the text in variablename. The default value is T.

• form=form name − Two possible values are “HTML” and
“INCLUDE”. By default, the context returns the form variables sent to
the outermost HTML page. If this tag is in an include file and you want
to list just those form variables passed to the include file from within
the [include] tag, specify “form=include” in the beginning
[formvariables] tag.

Optional Context Tags:

 Programmer Guide • 221

• [name] − The name of the variable currently looping through.

• [value] − The value of the variable.

• [index] − A number from 1 to the number of variables, indicating this
variable’s index in the list.

To display a list of all the form variables available, insert a [FormVariables]
context into a template.

For example:
The following are all the form variables available to this page:

[FormVariables]
[index],[name],[value]

[/FormVariables]

The [FormVariables] context has optional parameters placed within the
beginning tag in order to modify the list of form variables produced.

For example:
The following are the values of all the form variables with the name “text”:

[FormVariables name=text&exact=T]
[index],[value]

[/FormVariables]

Listing the variables with a given name is useful for getting the results of a
multiple select list or multiple checkboxes with the same name.

For example:
[include file=text.tpl&test=Y&category=software]
text.tpl:
[formvariables form=include]
[name],[value];
[/formvariables]

The above results in the following output:
file,text.tpl;test,Y;category,software;

[FREEMEMORY] TAG
Syntax: [FreeMemory]

Placing [FreeMemory] in your template displays the amount of memory
available to WebDNA. This number is reduced whenever templates are
cached, or databases are opened.

 222 • WebDNA

[FUNCTION] CONTEXT
New in 5.0
Syntax: [function name=...&preparse=T/F][/function]

Result: This new context enables the WebDNA programmer to call a
previously defined block of WebDNA code.

Optional Tag Parameters:

• name=variablename − User defined name for the function. The
name if then used like a normal WebDNA tag.

• preparse=T/F − By default, the WebDNA code that defines the
function is stored 'raw' and executed later when the function is called.
But if you need to programmatically create the function definition
using WebDNA, then you can set 'preparse' to 'T'. This will force the
WebDNA engine to first parse the WebDNA in the function definition
before storing it for later use.

Our first example creates a function named 'backwards' that will take a
variable named 'instring' and display the characters of the string in reverse
order. We use the following code...

[function name=Backwards]
[text]length=[countchars][instring][/countchars][/text]
[loop start=[length]&end=1&advance=-1][getchars

start=[index]&end=[index]][instring][/getchars][/loop]
[/function]

Now the function is defined and stored for later use in the template.
To execute the new function, we use...

[Backwards instring=abcdef_12345]

Function names take precedence over WebDNA global tags. So it is possible
to 'override' a WebDNA tag. For example, lets define a function named 'date'
that displays the date in bold text.

We use the following code...
[function name=Date]

 Programmer Guide • 223

[:global:Date]
[/function]

Note that in our function definition, we had to use explicit 'scoping' to access
the true WebDNA [date] tag. This is to prevent an infinite recursion when the
function code executes, i.e. keeps calling itself. You can learn more about
Scope and Scope Resolution in the 'Scope' tutorial.

Now when we use [date], our date function is called, instead of the global
[date].

[INCLUDE] TAG
Syntax: [Include file=FilePath]

Placing [Include FilePath] in your template replaces the [Include] tag with the
contents of the specified file. The included file can use any [xxx] tags that will
be substituted as though you had typed the entire contents of the file at that
place in the template.

Note: Normally all file paths are relative to the local template, or if they begin
with “/” they are relative to the web server’s virtual host root. As of version
3.0, you may optionally put “^” in front of the file path to indicate the file can
be found in a global root folder called “Globals” inside the WebCatalogEngine
folder. This global root folder is the same regardless of the virtual host.

 Optional Parameters Description

[INCLUDE file=FilePath&raw=T]
raw=T means the file should be
included unchanged, without
performing any [xxx] substitutions.

[INCLUDE
file=FilePath&fromCache=F]

fromCache=F means a more-recent
version of the file should be read
from disk, instead of using the
cached version in RAM.

[INCLUDE
file=FilePath&var1=xx&var2=
yy]

Passes any variable names (and
their values) you choose into the
included template, which can then
use [var1] anywhere inside it.

[INCLUDE file=^test.inc] test.inc is found inside
WebCatalogEngine/Globals/ folder

 224 • WebDNA

[LASTRANDOM] TAG
Syntax: [LastRandom]

Placing [LastRandom] in your template displays the same value as the last
[Random] number displayed. See [RANDOM].

[LISTVARIABLES] CONTEXT

Syntax: [ListVariables options]Variable Tags[/ListVariables]

Result: Lists all the text and/or math variables that have been set earlier on a
page.

To display a list of all the text or math variables available, put a
[ListVariables] context into a template.
Example (normally you would put the following text into a .tpl file on your
server and use a web browser to link to it):
The following are all the text and math variables available to this page:

[ListVariables]
[index],[name],[value]

[/ListVariables]

The [ListVariables] context has optional parameters that are placed within the
beginning tag in order to modify the list of variables produced.

Example:

The following are the values of all the text variables created on this
template so far:

[ListVariables type=text]
[index],[name],[value]

[/ListVariables]

The following are the values of all the math variables created on this
template whose variable name begins with "fred":

 Programmer Guide • 225

[ListVariables type=math&name=fred]
[index],[name],[value]

[/ListVariables]

Listing the variables with a given name is useful for displaying arrays of
variables.

Optional Tag Parameters:

The following parameters are optional to the [ListVariables] context:

Optional Tag
Parameters

Description

Name (Optional) The name of the variable to list.
Exact (Optional) T(rue) or F(alse) whether to exactly match

the name of the variable or match any name
containing the "name" value. (Default value is true.)

Type

(Optional) Text or Math. Default is to list variables of
both types, but if you specify Text then only Text
variables will be listed, and if you specify Math then
only Math variables will be listed.

Optional Context Tags:

The following tags are available inside a [ListVariables] context:

Optional
Context Tags

Description

[Name] The name of the variable.
[Value] The value associated with the variable.
[Index] A number from 1 to the total number of variables,

indicating this field's index position in the list.
[Secure]

(available from version 4.0.2rc2 and later)
Displays "T" if the variable is secure, "F" otherwise.

 226 • WebDNA

 [LOOP] CONTEXT
Syntax: [loop start=x&end=y]Any Text or HTML[/loop]

Result: Loops through the enclosing text the specified number of times

Required Tag Parameters:

• start=x − The starting index value to begin looping. This value is
required and may be positive or negative (depending upon whether
you are looping up or down).

• end=y − The ending index value when looping. This value is required
and may be positive or negative.

Optional Tag Parameters: Advance (The amount to advance by when
looping. This parameter is optional and may be positive or negative, the
default value is 1.)

Optional Context Tags:

• [index] − The current index number between or including Start and
End.

• [break] − If the [Loop] context sees the [Break] tag while executing a
loop, it will stop looping, once it finishes the current loop. Thus the
[Break] tag should only appear in a [ShowIf] statement that is
evaluated at the end of the loop.

The [Loop] context requires two parameters: Start and End. Looping occurs
between (and including) the Start and End value; advancing by 1 each time.
You may optionally tell the loop context to advance by a specified amount
(other than 1) by using the Advance parameter.

For example (normally you would put the following text into a .tpl file on your
server and use a web browser to link to it):

[loop start=1&end=[numAdd]&advance=1]
[append db=some.db]...[/append]Record [index] added.

[/loop]

Using the Loop context you can easily create a form that adds an arbitrary
number of records to a database. The form that links to this page (via a
showpage command for example) can specify the data to add for each
record and how many records to add ([NumAdd]).

If you chose to add three records, the results would look like this:

 Programmer Guide • 227

Record 1 added.
Record 2 added.
Record 3 added.

For example:
[loop start=1&end=7&advance=2][index][/loop]

This will loop 4 times using [Index] values 1,3,5,7.

Note: It is possible to loop in either ascending or descending order.

Ordinarily you loop in ascending order:
[loop start=1&end=5&advance=1][index][/loop]

To loop in descending order, define the beginning of the loop as the greater
number, the end as the lesser number and advance as a negative number:

[loop start=5&end=1&advance=-1][index][/loop]

For example:
[loop start=1&end=10]
Index = [index]
[showif [index]=4][break][/showif]
[/loop]

The [Loop] context above always stops looping after the fourth loop when it
sees the [Break] tag. The tag is placed at the end of the context because it
doesn’t stop executing until the end of the loop that contains the [Break] tag.

[PLATFORM] TAG
Syntax: [Platform]

Placing [Platform] in your template displays the computer platform (Windows
or Macintosh or UNIX) upon which WebDNA is running.

[RANDOM] TAG
Syntax: [Random]

Placing [Random] in your template displays a random number between 1-
100. See [LastRandom].

 228 • WebDNA

[RETURN] CONTEXT
New in 5.0
Syntax: [Return]<webdna>[/Return]
Result: The textual output generated as a result of a WebDNA function call
includes whatever text remains after the function code is executed. This may
include unwanted spaces, carriage returns, and other 'white space'
characters. The [Return] context can be used to explicitly identify what text is
returned from the function call, thereby avoiding unwanted characters.

The [return] context is optional and can only be used from within the
[Function] context. The [return] context does NOT 'break out' of a function
call, so it is possible to use one or more [return] contexts to 'tailor' the
functions output.

Example without [Return]

Below is a simple function that does not include a [return] context. This
function simply adds the first ten positive numbers. We will execute the
function, then wrap the execution in [url][/url] tags to 'reveal' the extra white
space that can accumulate from a function call (much as it would when using
the WebDNA [include] tag.)

Here is the code:
[function name=add_em_up]
[text]result=0[/text]
[loop start=1&end=10]
[text]result=[math][result]+[index][/math][/text]
[/loop]
[result]
[/function]

Executing the function, we get: " 55 "

Now, lets 'wrap' the function result with the [url] context to uncover the 'extra'
stuff we accumulated a result of the function call.

Here is the result:
"%0D%0A%0D%0A%0D%0A%0D%0A%0D%0A%0D%0A%0D%0A%0D%0
A%0D%0A%0D%0A%0D%0A%0D%0A%0D%0A%0D%0A%0D%0A%0D%
0A%0D%0A%0D%0A%0D%0A%0D%0A%0D%0A%0D%0A%0D%0A55%0
D%0A"

Note all the extra white space, in this case, carriage returns and line feeds."

 Programmer Guide • 229

The 'old' Solution

One way that WebDNA programmers have dealt with unwanted return
characters, is to wrap line-endings, or other unwanted white space, with
WebDNA comments, i.e. [!]...[/!]. So the function definition on the previous
page would look like...

[function name=add_em_up][!]
[/!][text]result=0[/text][!]
[/!][loop start=1&end=10][!]
[/!][text]result=[math][result]+[index][/math][/text][!]
[/!][/loop][!]
[/!][result][!]
[/!][/function]

Executing the above function, and wrapping the result with URL tags, we get:
"55"

The extra 'garbage' is gone, but using all those [!][/!] pairs is cumbersome,
and does add some extra parsing overhead.

 A Better Solution

The [Return] context can now be used to target exactly what we want the
function to return. So our example function now looks like...

[function name=add_em_up]
[text]result=0[/text]
[loop start=1&end=10]
[text]result=[math][result]+[index][/math][/text]
[/loop]
[return][result][/return]
[/function]

"[url][add_em_up][/url]"

Executing the above code, we get: "55"

The extra 'garbage' is gone, and we did not have to use all those [!][/!]
contexts.

Even if the explicit results of a function call are not significant, for example,
when the function assigns the result to some global text variable. It is still a
good idea to use the [Return] context in order to cut down on the amount of
white space that my be returned to the client browser.

For example:
[function name=add_em_up]

 230 • WebDNA

[text]result=0[/text]
[loop start=1&end=10]
[text]result=[math][result]+[index][/math][/text]
[/loop]
[text scope=global]result=[result][/text]
[return][/return] [!] return nothing [/!]
[/function]

[add_em_up]
result="[result]"

Executing the above code, we get:

result="55"

As mentioned in the first page of this tutorial, the [Return] context does not
actually 'return' or 'break out' of the function call. So, it is possible to have
multiple [Return] contexts in a given function definition. For example:

[function name=add_em_up]
[text]result=0[/text]
[loop start=1&end=10]
[text]result=[math][result]+[index][/math][/text]
[showif [index]

Results in...

"1+2+3+4+5+6+7+8+9+10=55"

The [Return] context is also very useful when creating 'recursive' functions
(functions that call them selves until a terminating 'base case' is reached).
Here is a sample recursive function that calculates the factorial for a given
integer.

[function name=factorial]
[showif [num]>1]
[return][math][num]*[factorial num=[math][num]-

1[/math]][/math][/return]
[/showif]
[hideif [num]>1]
[return]1[/return]
[/hideif]
[/function]

6! = [factorial num=6]

 Programmer Guide • 231

The results...

6! = 720

[SCOPE] CONTEXT
New in 5.0
Syntax: [scope name=...]<WebDNA>[/scope]
Result: Enables a WebDNA programmer to explicitly define a block of
WebDNA code that has a separate variable space. Meaning that variables
defined within the 'scope', only exist for the duration of WebDNA between the
'scope' tags.

Optional Tag Parameters:

• name - User defined name for the local variable space. This name
can be used with the scope resolution operator to 'access' variables
stored in the 'named' variables space (but only for the duration of the
scope context).

Named Scope

Lets create a named variable space called 'mytempvars', and create a few
text variables in the new scope.

We use the following code...

-Scope begin...

[scope name=mytempvars]
[text]a=11[/text]
[text]b=22[/text]
[text]c=33[/text]
List of local scope variables...

[listvariables scope=mytempvars][name]=[value]

[/listvariables]
-Scope end...

[/scope]

List of global variables...

[listvariables][name]=[value]

[/listvariables]

 232 • WebDNA

Result...
-Scope begin...

List of local scope variables...
a=11
b=22
c=33
-Scope end...

List of global variables...
page_number=2
page_name=Scope
edit_link=Scope/Scope_-_---2---.tpl
back_link=Scope_-_---1---.tpl
next_link=Scope_-_---3---.tpl
new_file=Scope/Scope_-_---3---.tpl
main_title=Scope

So you can see that the 'local' scope variables; 'a','b', & 'c', only exist
between the [scope] tags.

This is useful when you need to create several temporary variables for a
specific block of WebDNA code, but do not want the variables 'cluttering' the
global template variable space.

Scope and Functions

WebDNA functions have their own implied scope. Meaning that when you
create variables inside of a function definition, the variables are local to that
function. The 'name' of the variable space in the function, is the function
name itself.

For example...
[function name=test_function]
[loop start=1&end=10]
[text]local_[index]=[index][/text]
[/loop]
[listvariables scope=test_function][name]=[value]

[/listvariables]
[/function]

[test_function]

Results...
local_1=1

 Programmer Guide • 233

local_2=2
local_3=3
local_4=4
local_5=5
local_6=6
local_7=7
local_8=8
local_9=9
local_10=10

Scope Resolution - Step-Wise Method

Because of the addition of 'local' variable name spaces to WebDNA, there
will often be occasions when you need to explicitly access variables in a
given scope. You can do this using the new 'Scope Resolution' operator: '::'.
There are two modes of Scope resolution; 'step-wise' and 'named'.

When parsing WebDNA code, the WebDNA engine will search 'inside-out' for
variable matches on a given token, and return the first 'match'. The step-wise
scope resolution method can force the engine to 'step over' matching
variable names and continue searching for 'outer' variables that match the
given token.

This 'step-wise' scope resolution is used as follows...
Any number of 'colon' pairs preceding a variable name.

[::]

A usage case...
Often from within an [orderfile] context, you may want to access the global
[date] tag. Until now, if you used [date] from within an orderfile context (or on
a page called with the 'showcart' command), you would get the orderfile's
date, and not the 'global' date value. Now, you can retrieve the 'global' date
value using, [::date] from within the orderfile context. Basically the '::' reads
as, 'skip the first occurrence of a 'date' value, and retrieve the next (if it
exists).'

[orderfile file=testcart]
[date]

[::date]

[/orderfile]

Results...

 234 • WebDNA

1/01/2001
03/04/2003

You can 'stack' any number of resolution operator '::' pairs to 'skip' to a
particular 'outer' instance of a variable...

[scope name=scope1]
 [text]a=1[text]
 [scope name=scope2]
 [text]a=11[text]
 [scope name=scope3]
 [text]a=111[text]
 value of 'a' in [scope3] = [a]

 value of 'a' in [scope2] = [::a]

 value of 'a' in [scope1] = [::::a]

 [/scope]
 [/scope]
[/scope]

Results...
value of 'a' in [scope3] = 111
value of 'a' in [scope2] = 11
value of 'a' in [scope1] = 1

 Scope Resolution - Named Method

You can directly refer to a particular scope using the scope name between
the ':' colons. The 'name' must be qualified by 'named-', i.e.

[:named-:]

'Reserved' scope names can also be used. In this case you do not need to
include the 'named-' prefix, i.e.

[:global:]

Reserved scope names are discussed on the following page.

Using the orderfile example from the previous page...
[orderfile file=testcart]

 Programmer Guide • 235

[date]

[:global:date]

[/orderfile]

Results...
1/01/2001
03/04/2003

The 'global' name is the reserved scope name for secure template variables.

Using the nested scopes example from the previous page...
[scope name=scope1]
 [text]a=1[text]
 [scope name=scope2]
 [text]a=11[text]
 [scope name=scope3]
 [text]a=111[text]
 value of 'a' in [scope3] = [:named-scope3:a]

 value of 'a' in [scope2] = [:named-scope2:a]

 value of 'a' in [scope1] = [:named-scope1:a]

 [/scope]
 [/scope]
[/scope]

Results...

value of 'a' in [scope3] = 111
value of 'a' in [scope2] = 11
value of 'a' in [scope1] = 1

Reserved Scope Names

There are a few 'reserved' scope names:

'global' - refers to the 'normal/secure' template variable space.

 236 • WebDNA

'local' - When used inside of a function or scope context, refers to the
variable space associated with the current function or scope.

'insecure' - Refers to the 'insecure' template variable space (this space also
includes HTML form variables).

A demonstration of named and step-wise scope resolution...
[text]abc=123_global[/text]
[text insecure=F]abc=123_insecure[/text]

[scope name=scope1]
[text]abc=123_local[/text]

global 'abc' = [:global:abc] - using reserved 'global' name

global 'abc' = [::abc] - using 'step-wise' scope

insecure 'abc' = [:insecure:abc] - using reserved 'insecure'

name

insecure 'abc'= [::::abc] - using 'step-wise' scope

local 'abc' = [:local:abc] - using reserved 'local' name

local 'abc' = [abc] - using implied scope

local 'abc' = [:named-scope1:abc] - using 'named' scope

[/scope]

Results...
global 'abc' = 123_global - using reserved 'global' name
global 'abc' = 123_global - using 'step-wise' scope

insecure 'abc' = 123_insecure - using reserved
'insecure' name
insecure 'abc'= 123_insecure - using 'step-wise' scope

local 'abc' = 123_local - using reserved 'local' name
local 'abc' = 123_local - using implied scope
local 'abc' = 123_local - using 'named' scope

 Programmer Guide • 237

New 'scope=' parameter

Besides being able to 'resolve' variables in different scopes, you can create
variables for a specified scope using the 'scope=' parameter in [text] and
[math] assignments. This option will soon be available for other persisted
WebDNA object, i.e. Arrays, Tables, XML/XSL objects, etc.

This is useful when you have a block of WebDNA code within a function, or
named scope, and need to create/modify a variable in an outer scope.

For example...

Here we simulate a 'pass by reference' by passing the variable name, to
receive the results, into a function call.

[function name=Backwards]
[text]length=[countchars][in_string][/countchars][/text]
[text scope=global][output_to]=[loop

start=[length]&end=1&advance=-1][getchars
start=[index]&end=[index]][in_string][/getchars][/loop][
/text]

[/function]

[Backwards in_string=abcdef_12345&output_to=result]

result = [result]

Results...
result = 54321_fedcba

In the example above, the function definition assumes that the destination
variable existed in the 'global' scope. Lets do the same thing as before, but
pass in the scope name as well...

[function name=Backwards]
[text]length=[countchars][in_string][/countchars][/text]
[text scope=[output_scope]][output_to]=[loop

start=[length]&end=1&advance=-1][getchars
start=[index]&end=[index]][in_string][/getchars][/loop][
/text]

[/function]

[!] clear out global 'result' from previous example [/!]
[text]result=[/text]
[scope name=scope1]

 238 • WebDNA

[Backwards
in_string=abcdef_12345&output_to=result&output_scope=sco
pe1]

value of 'result' inside of 'scope1' = '[result]'
[/scope]

value of 'result' outside 'scope1' = '[result]' (should be empty).

Results...
value of 'result' inside of 'scope1' = '54321_fedcba'

value of 'result' outside 'scope1' = '' (should be empty).

[SENDMAIL] CONTEXT
Syntax: [sendmail to=address&from=address&subject=text]Email

text[/sendmail]

Result: Sends an email to the specified address.

Required Tag Parameters:

• to=address − Recipient of this email, as in address@domain.com.

• from=address − Return address, as in
youraddress@yourdomain.com.

• subject=text − Subject line for email.

Optional Tag Parameters:

• saveonsuccess - instructs WebDNA to save or not save the email
files after successful transmission.

• saveonfail - instructs WebDNA to save or not save the email files
after failed transmission.

To send an email, insert a [SendMail] context into a template with the body of
the email message inside the context. Specify to, subject, and from
information in parameters of the [SendMail] context. WebDNA does not
actually send the email; instead it writes a special file into an EmailFolder
that the separate Emailer program uses to send the email. If the Emailer
program is not running, no emails are sent. The Emailer program does not
erase old outgoing email files until it has successfully completed sending the
email.

mailto:address@domain.com
mailto:youraddress@yourdomain.com

 Programmer Guide • 239

For example:
[sendmail to=you@xxx.com&from=me@xxx.com&subject=Hello]
This is the body of the email. The date is [date].
[/sendmail]

Any [xxx] values are first substituted for their real values (both in the
parameters as well as the body of the message), then the email file is written
into the EmailFolder, where the Emailer program checks for new files every
few seconds and sends them out.

The Emailer application has a status window listing all emails sent and their
status. An error code of 0 (zero) means that the email was sent successfully.
If there was a problem sending the email, one of the following error codes
displays:

Emailer Error Codes
0 (no error) Mail sent successfully.

100 (netOpenDriverErr)

101 (netOpenStreamErr)

102 (netLostConnectionErr) The above three errors are Open Transport or
network errors; if they are transitory, Emailer will retry the message until
it is able to send it correctly. If the problem persists, you are likely
having other problems and may need to restart your computer or check
your network setup.

103 (netDNRErr) Often caused by incorrectly addressed email files;
examine the files in your EMailFolder in a text editor and fix or delete
them as necessary.

104 (netTruncatedErr) Usually indicates a broken pipe between sender and
receiver; message will be resent.

120 (smtpServerErr) Usually caused by a non-responsive or busy mail
server; try changing the Emailer Preferences to temporarily point to a
known, working SMTP server.

150 (badRecipient) Caused by a bad recipient address; an error will be
written to the log and the offending message moved to the
EmailCompleted folder.

151 (timeout) Emailer timed out while trying to connect to the mail server
and will try again in 30 seconds. Often caused by a busy mail server; if
problem persists, try changing the preferences to point to a less
busy/more reliable mail server.

mailto:to=you@xxx.com&from=me@xxx.com&subject=Hello

 240 • WebDNA

Note: If you wish to set custom header values for your email, you can write
the mail file yourself using the [WriteFile] context. Emailers file format
conforms to UNIX SendMail and Macintosh SIMS/EIMS. See Email File
Format for more information.

By default, after WebDNA has transmitted an email, the email file is moved
from the EMAILFolder to either the EMAILCompleted or EMAILProblems
folder, depending on the success or failure of the email transmission. You
can use the 'SaveOnSuccess' and 'SaveOnFail' [SendMail] parameters to
instruct WebDNA NOT to 'save' the email files. Here is an example:

[sendmail
to=steve@here.com&from=rad@there.com&subject=WebDNA&Save
OnSuccess=F&SaveOnFail=T]

WebDNA leads the way to productivity.
[/sendmail]

In the example above, the email file would not be 'saved' to the
EmailCompleted folder after a successful transmission, but it would be saved
to the EmailProblems folder it there was an error in transmission.

HEADER FIELDS
You may set any shopping cart header field (such as Name, taxRate,
Address1, etc.) at the same time you add a product to the cart. See
SetHeader.

To change a line item in a visitor’s shopping cart, insert a SetLineItem
context into the template (alternately, you may use the ShowCart command
from a URL or a FORM). Whenever WebDNA encounters a SetLineItem
context, it opens the shopping cart file and changes values in a line item
(identified by its index). The item’s quantity, textA-E, and cart header fields
are all changeable. You can use a different price by creating a Formulas.db
database. Also see Remove, Clear, ShowCart, [AddLineItem] and Purchase.

For example:
[setlineitem cart=5678&index=3&db=catalog.txt]quantity=4
&textA=Blue[/SetLineItem]

Shopping cart file “5678” is opened, and line item 3’s quantity is changed to 4
and textA changed to “Blue” (as specified in the context above).

 Programmer Guide • 241

[THISURL] TAG
Syntax: [ThisFile]

Placing [ThisFile] in your template displays the platform-specific file system
full path of the current template page being displayed. The path separators
are platform-specific, so the path will look different depending on what
MacOS, Windows, or UNIX computer system is used.

[VERSION] TAG
Syntax: [Version]

Placing [Version] in your template displays the version of the currently
running WebDNA program or plug-in.

[!] COMMENT CONTEXT
Syntax: [!]Any Text to be Hidden[/!]

Description: Hides text, usually a comment for the WebDNA developer to
read.

To hide comments in HTML pages so you can see them when you are
developing a template, but web visitors cannot see them, put them inside a
comment context. Anything inside the [!] context is hidden, and WebDNA will
not execute.

For example, normally you would put the following text into a .tpl file on your
server and use a web browser to link to it:

[!]This text will be hidden from web visitors[/!]

Many times you will want to keep notes for yourself in a WebDNA template,
yet you do not want outsiders to see these notes.

Unlike HTML comments, which are sent to the browser even though they are
hidden from view (and can be seen with a View Source command), WebDNA
comments never get sent to the remote browser. This shortens download
times, and provides a degree of protection against prying eyes.

 242 • WebDNA

Using WebDNA Tags
WebDNA replaces tags with their computed value. Since they are not
containers, there is no ending tag ([/xxx]) required. Some tags may be placed
in any template processed by WebDNA; others may only be used if they are
within the specified context. Additionally, if you have defined a SUFFIX-
MAPPING and ACTION for WebDNA to process .tpl or .HTML pages, then
using a web browser to link to any .tpl or .HTML page on your site is
equivalent to performing a ShowPage using that file as a template.

Depending on your Preference settings, you may have to include the
<!--HAS_WEBDNA_TAGS--> statement at the top of your files to tell WebDNA
to interpret the [xxx] tags inside the file.

PREFERENCES
Depending on the preference settings you defined in the WebDNA
Administration template, you may need to include <!--HAS_WEBDNA_TAGS-->
at the top of your files to indicate that WebDNA should interpret the [xxx] tags
inside the file. This tag is case sensitive. <!—HAS_WEBDNA_TAGS_XML
indicates that the WebDNA on this page conforms to the newer XML-style
syntax.

PARAMETERS
Some tags do not require any parameters, some tags require only one
parameter, and others require multiple parameters. Tags that use a single
parameter often do not require the name of the parameter to be used in the
tag (although we do not recommend this; it’s simpler and less error-prone to
always use the named parameter everywhere). Tags that require multiple
parameters must have them specified in name/value pairs with the
ampersand character “&” connecting multiple parameters. The names of the
required or optional parameters are not case sensitive, but must appear
exactly as written, without extra spaces. Quotation marks should not be used
to surround the value of a parameter as is the case with many HTML values
(unless a quotation mark is part of the value itself).

Many tags take optional parameters. Either the parameters default to a
standard value or they are user definable.

 Programmer Guide • 243

Examples:

No parameters:
[browsername]

Single require parameter, name not required:
[include filepath]

Multiple parameters, name/value pairs separated by “&”:
[include file=filepath&raw=T]

Optional, user definable parameters. The user defines both the name and
value of the parameter. Parameter “name” is passed to the included file, but
not required by WebDNA:

[include file=filepath&myname=myvalue]

ITALIC TEXT
The name of a parameter is fixed, but the value assigned to it can vary. All
text that is italicized refers to values that should be replaced with your
appropriate data.

Example:
[include file=filepath]

The single required parameter, “file” must appear exactly as shown. The
actual path, however, varies depending upon your situation. The value
filepath should be replaced with the actual file path used.

PATHS
All tags with parameters specifying paths to databases, templates, or files
should be specified in standard URL style. That is, relative paths from the
current location begin with the file or folder name. On Macintosh and UNIX
systems, full paths from the root of the virtual web server folder begin with a
forward slash “/” character. On Windows, full paths that begin with a forward
slash “/” are from the WebCatalogEngine CGI folder (where DBServer.exe
resides). Folder names are separated with the forward slash character as
well.

Example:
[include file=MyFile/header.inc]

 244 • WebDNA

Path is relative from the current location. The included file is found in a folder
called “MyFile” inside the folder that contains the template.

[include file=/Includes/header.inc]

Path is global, no matter where the template is located. The file is found in a
folder called “Includes” in the root web server folder.

FORM VARIABLES
Syntax: [name]

The variables or parameters of a form can be included on a page that the
form links to by enclosing the name of the variable in square brackets. Since
the user determines the name of a form variable, the actual name and
associated value, will vary.

Example:
Hello

- or -
<form method=post action=”test.tpl”>
<input name=”var1” value=”Hello”>
<input name=”var2” value=”World”>
</form>

Both of the preceding forms (first method=get, second method=post) link to a
page named test.tpl.

If test.tpl is the following:
The value of var1 is [var1]

The value of var2 is [var2]

the text returned from this example would be:
The value of var1 is Hello
The value of var2 is World

Using WebDNA Contexts
A context is the WebDNA term for enclosing tags that have a beginning and
ending form and for enclosing a portion of text. The Tags defined in the first
part of the WebDNA reference did not require closing tags. An important
characteristic of contexts is that they may be nested, that is to say, one
context can enclose another. In fact, some contexts can only be enclosed

 Programmer Guide • 245

within certain other contexts. Usually it is obvious whether a context must be
enclosed within another context. For example, it would make no sense to
have a [founditems] . . . [/founditems] context outside of a [search] . . .
[/search context]. Unless you search for items, there can be no found items.
In many cases, the actual result returned by a specific context may depend
upon its being within an enclosing context.

Obviously, you can include tags inside a context as well. In fact, you can use
WebDNA tags as parameter values within the beginning context tag itself.

A context has two kinds of parameters. Both kinds of parameters are present
in the [AddLineItems] context described first. In addition, it is possible to have
special tags that are only available within a certain context.

TAG PARAMETERS
A tag parameter is a parameter that is found within the beginning context tag.
This is very similar to the tag parameters mentioned in the previous section.

For example:

[search db=databasepath&search criteria]...[/search]

CONTEXT PARAMETERS
Context parameters are found between the enclosing context tags (as
opposed to within the tags themselves. Not all contexts have context
parameters (or tag parameters for that matter). Many contexts allow text of
any kind between the beginning and ending tag. Those that require context
parameters require that the parameters be specified in the same way they
are for tags.

For example:
[append ...]sku=001&description=productName[/append]

CONTEXT VARIABLES
Within a context, you can access specific variables that don’t function outside
of the context. This is especially true for any context that loops through
values as in the Founditems context that loops through found items. At the
very least, a looping context should have tags like [Index] available to let you
know which item you are currently looping through. Other tags make sense

 246 • WebDNA

within their context alone. The following two need to be recopied wherever
they came from…

For example:
[loop start=1&end=2]Current Index: [index][/loop]
Context: ! - (Comment)
Syntax:
[!]some text[/!]

Result:

Use the Comment context (the exclamation point) to add text to your
HTML/WebDNA pages that is removed before being sent to the browser.

To add additional line breaks or text comments, without your visitors seeing
the text when viewing the source of their Web page, enclosed the text in the
Comment context.

For example:
[!]Here’s where we add a record to the database[/!]
[append db=...][/append]

Using WebDNA Commands
WebDNA commands can be sent to WebDNA in essentially two ways: 1)
when they are included within the URL of a hypertext link (an <A HREF>
tag), and 2) as values in a hidden form field.

For example:

In the Tutorial, users enter the shopping site from the first page sent from the
TeaRoom site by clicking on the <A HREF> hypertext link that contains the
search command:

<A HREF=”Search.tpl?command=search&geSKUdata=0&db=TeaRoom.db
&categorysumm=t&categorysort=t&max=50”> Click HERE to Enter the
store.

When the visitor clicks on the hypertext link, the browser sends the URL to a
web server. The URL requests the server to send it back the page
“Search.tpl”. The server receiving the command has been configured to
recognize that the .tpl suffix requires that page be processed through the
WebCatalog CGI or plug-in. In this case, the command that will be executed

 Programmer Guide • 247

by WebDNA is the Search command. WebDNA searches the TeaRoom.db
database for all the records and summarizes them in a list by category.

We could send the same command using an HTML <FORM> tag.

For example:
<FORM METHOD=”POST” ACTION=”Search.tpl”>
<INPUT TYPE=”SUBMIT” NAME=”command” value=”search”>
<INPUT TYPE=”SUBMIT” VALUE=”Summarize by Product Categories”>
</FORM>

When the visitor clicks on the submit button the same information is sent to
the server and WebDNA that was sent by clicking on the hypertext link.

COMMAND= NOTATION
You must specify the command as a parameter after the question mark. This
style is used for Windows web servers and provide cross platform
compatibility for your templates. When using this style, the URL is followed
immediately by a question mark and then the list of parameters. A parameter
whose name is “command” and has a value from the commands listed in this
section is used when executing the template specified.

Most examples use this notation in order to provide compatibility with both
Windows and Macintosh.

For example:

 248 • WebDNA

 Programmer Guide • 249

Chapter 4 − Advanced Uses of
WebDNA

WebDNA is a flexible dynamic responding text engine. It can respond to a
request from multiple users to provide information back to the Web Server
that satisfies each browser request. An example of this is the multi-user day
planner feature. Users that have different meeting agendas can be presented
with their particular calendar of meetings and events following a request to
see their day planner.

This chapter describes how some ideas for WebDNA can be used
dynamically to provide multiple services and strategic business solutions.
Further, once you come up with these solutions you can encrypt them so that
others can only use them and not see how you are doing it.

Encrypting Templates
In addition to encrypting text using WebDNA’s [encrypt] context, you can
encrypt entire WebDNA templates so they can be distributed and used
without having the raw WebDNA in the templates visible (i.e. such as the
contents of an email). This is very useful for developers wishing to sell
WebDNA-based solutions.

Sometimes you will want to give someone else a WebDNA template without
letting him or her see your “source code” in the file. For example, if you
create a WebDNA solution that is for sale, you may not want others to be
able to read the templates and make modifications or see your proprietary
algorithms.

HOW TO ENCRYPT TEMPLATES
To create an encrypted template, you must first design and debug the
template as you normally would. Then use the [Encrypt] context with a seed
of your choosing to create the encrypted version of the original template.
Note that you shouldn’t make your seed value public in any way. After the
templates have been encrypted, a special tag must be added to the top of
the file so it can be recognized as an encrypted file and then your seed value
must be encrypted using WebDNA’s default encryption.

 250 • WebDNA

Use the following WebDNA to encrypt your file and add the special tag to the
beginning of the file. Note that you may put any text, copyright information for
example, before the header tag. The encrypted WebDNA must start on the
line after the header tag. For example, in order to use WebDNA to
automatically convert your template (file.tpl) to an encrypted template
(newfile.tpl) you would execute the following:

[writefile file=newfile.tpl&secure=F]Copyright © 2009 WebDNA Software Corp.
http://www.webdna.us/
<!--HAS_WEBDNA_TAGS[!][/!]_ENCRYPTED_2-->
[encrypt]seed=XXXXXXX&product=WCAT[/encrypt]
[encrypt seed=XXXXXXX][include file=file.tpl&raw=T][/encrypt][/writefile]

After using the above template, your hard disk will contain a file called
“newfile.tpl” which you can give to other users, confident that they cannot
read or modify it. Using the template is easy—it works just like any other
template.

Note: [!][/!] is a special trick to fool WebDNA into thinking this page is not an
encrypted page, and should be treated like a normal template. The [!][/!] is
essentially removed during processing, which causes the resulting template
to contain the now-correct tag that indicates it is encrypted.

ENCRYPTING THE HEADER TAG
The following header tag is valid for recognizing encrypted files:

HAS_WEBDNA_TAGS_ENCRYPTED_2

In addition to encrypting your seed value, you can specify which product this
template works with. Use “WCAT” for WebDNA, “TYPH” for Typhoon, or
“WDNA” for any WebDNA product.

Link to an encrypted page and WebDNA automatically decrypts and
processes the page. In order to prevent someone from displaying or
accessing the decrypted templates, the following precautions have been
made:

.

.

command=raw − Does not work with encrypted templates; nothing is
returned.

[include raw=T] − Cannot be done on encrypted templates; nothing is
returned.

 Programmer Guide • 251

Talk List Subscription and Archive

WebDNA provides several ways for users and developers to share their
experiences, concerns, comments, and knowledge in mastering the topic
they are interested in. Visit the WebDNA Development Resource Center
located at http://dev.webdna.us.

The main page provides news and announcements along with any current
beta versions of the software. You can download fully functioning demon-
stration copies of WebDNA and obtain trial serial numbers.

The links along the top of the page provide access to the discussion
forum, white papers, the latest versions of WebDNA for download, a
reference to the WebDNA Programming Language, Video Training, a Talk
List with searchable message archive and more.

To use the Forum, click the Register link on your first visit and respond to
the confirming email. After that, you can log on and post your messages
and questions using your username and password.

The Talk List Archive provides years of questions and answers by other
programmers. In addition to being able to usually find the answer you
need, you can subscribe to our active talk list where you will usually
receive answers from experienced users quickly. The talk list is one of the
most active in the industry and one of the most valuable parts of
WebDNA.

Figure 12. Shared POP Mailbox Setup Screen

For further information, look at the WebDNA in the example.

Generating Online Banner Ads
Through the use of WebDNA, you can generate online banner
advertisements and track them. The characteristics of the banner ad can
include such things as placement and size, frame border, refresh frequency,
content links for different advertisers subscribing to the service, and ad
statistics reporting and email functions. From the Welcome to WebDNA
page, you can see an example of a banner ad under the WebDNA
Community List link.

There are other advanced uses of WebDNA, so many in fact, that to put
them all in this reference manual would be a manual within itself. However,
another notable advanced usage would be Sales Contact management. For
a robust web server used by a sales organization, you might need to design
a template that fulfills a multi-user, multi-access need according to the team
hierarchy. In addition, you might need to make available an array of

 252 • WebDNA

 Programmer Guide • 253

interfaces to serve various remote computing clients such as a Palm Pilot or
a notebook computer using Mac or Windows. The interface issues are a part
from the individuals that would have access to view and/or provide Sales
data from the field.

Dreamweaver Integration
WebDNA includes WebDNA extensions that can be added to the
Dreamweaver web development program. With these extensions, WebDNA
commands can be called within the html used to develop the site's web
pages. Refer to the Dreamweaver section in Chapter 4 of the WebDNA User
Guide for a description of how WebDNA can be added to Dreamweaver web
page design and layout.

XML Syntax Explanation
To give everyone a head start on playing with the new-style syntax, here's a
primer. We are calling it XML syntax only because it is not HTML and it tends
to follow the guidelines of XML and it looks a lot like XML. It is basically just
the type of syntax that most graphical editors like Dreamweaver tend to
expect, and *not* chew up like the original [classic] syntax.

The general rules is to substitute "[" with "<DNA_", "]" with ">", and named
quoted-value pairs instead of ampersand-delimited pairs. You can see a the
new syntax in the included TeaRoomXML example, which has been ported
to XML syntax. So the following classic syntax:

<!--HAS_WEBDNA_TAGS-->
[loop start=1&end=10]
[index]
[/loop]

becomes
<!--HAS_WEBDNA_TAGS_XML-->
<DNA_loop start="1" end="10">
<DNA_index>
</DNA_loop>

All parameters *must* be named, and *must* be quoted, even if they are
numeric or have no spaces in them (also a rule of XML). At some point we
may even go so far as to require lowercase tag and parameter names, as
XML does, in order to help out with future XML editors.

 254 • WebDNA

Certain contexts such as [ShowIf] are required to have a named parameter,
so they become:

<DNA_ShowIf expr="12<13">...</DNA_ShowIf>

You can't get away with unnamed parameters for [Include] either:
<DNA_Include file="fred">

Again, all of these named things may look funny when you type them out, but
they help products like Dreamweaver immensely.

In order to make it easier for you to port sites one-page-at-a-time, we have
gone to great lengths to let you intermix the syntax. [include], for instance,
automatically assumes the file you're including will be the same syntax as the
template you're including *from*.

<!--HAS_WEBDNA_TAGS--> means classic syntax for this whole page
<!--HAS_WEBDNA_TAGS_XML--> means XML syntax for this whole page
[include file=fred.inc] will parse fred.inc using classic syntax
[include file=fred.inc&xmlSyntax=T] will parse fred.inc using XML syntax
<DNA_Include file="fred.inc"> will parse fred.inc using XML syntax
<DNA_Include file="fred.inc" xmlSyntax="F">will parse fred.inc using classic

syntax

Be careful with quotes! It is easy to forget and write something like [include
file="fred.inc"] <-- those quotes are literal in classic syntax, and will create
wrong results, where it will look for the literal quote in the filename.

Embedded quotes need to be escaped, also to help with Dreamweaver
parsers:

<DNA_ShowIf expr="the letter \"a\" ! \"b\">">"

The idea here is that expr="...a bunch of stuff..." must know when it's hit the
ending quote. So any embedded quotes you put inside have to be preceded
by \, just like you do in JavaScript.

Arrays: the old trick of using [interpret][array[index]][/interpret] still works in
XML syntax, but we had to do some fancy footwork to recognize it.
The syntax looks like this:

<DNA_Interpret><DNA_array<DNA_Index>></DNA_Interpret>

Undefined variables: classic syntax still treats undefined [x] as literally "[x]", in
order to handle the case where you're just typing some plain text on a page
that happens to have brackets around it. We did this because we have no
way of knowing when you mean literal text and when you mean WebDNA
variables. But under XML syntax, we know for certain that you are trying to

 Programmer Guide • 255

get at a variable, because there is no ambiguity about being a WebDNA
construct. So in that case we output "undefined" in its place.

Security
Security to the content provided on web pages utilizing WebDNA is dealt with
on a per template basis, as well as creative uses of [ShowIf] around
information within a template. You can use WebDNA’s [Protect] tag to name
any user group from the Security section under the Administrator section of
the Administration link. The tag itself can be positioned anywhere on the
template where it is to be used. For any template, use of the protect tag
causes the web server to collect the user name and password to challenge
the user to access the template. Protect causes the user name and
password to be used to look up the account in the WebDNA User.db – the
groups they are members of are used to compare against the groups allowed
to access this the template. The protect tag is an all or nothing access to a
template, you can further refine your protection of data by using [showif]
contexts within the template.

All protected templates will use the current username and password sent by
the browser and compare that against the system users, those in users.db,
administered by the security link in your WebDNA admin. Should the user
and password not match a user that is a member of the groups that are being
allowed access to this template, a challenge for authorization will be
returned. In StoreBuilder, the protect tag is used to allow the Admin group as
well as the store administrator group control over the store – the store admin
group is a preference in the merchant screen for StoreBuilder.

The function of comparing the passed in username and password against the
users.db is done from within a special template called MultiGroupChecker.
Within MultiGroupChecker straightforward WebDNA is used to perform the
logic and you are welcome to extend this to fit your business needs, such as,
the acceptable range of IP values, store access hours, and other levels of
security as needed. Keep in mind that any changes to this special template
effect the entire server.

To further aid security for the store, WebDNA 4.0 has added an optional
expiration date for each account. The expiration date is set on the Security
form in the WebDNA administration. When the expiration date is passed, the
user’s access is treated as if it doesn’t exist.

http://beetle.pacific-coast.com/

 256 • WebDNA

MACINTOSH WEBDNA SECURITY NOTES

General Assumptions

Physical Security

.

.

.

.

.

.

.

.

.

It is assumed that your web site is physically secured in such a way
that unauthorized persons cannot read/write files to its hard disk. This
includes people physically standing at the box, as well as remote file
read/write such as the following:

FTP

File Sharing

SiteEdit Pro is not a problem because admin password has always
been required to display WWWOmega files

Timbuktu

PCAnywhere

Obviously you’ve got big problems if unauthorized people can
read/write your hard drive at will. All of these products require
passwords, so they are OK to use as long as the password is not
compromised.

Secure CGIs

It is assumed that no third-party CGI/Plugin installed on your web site
will be allowed anonymous users to display, erase, or modify any of
WebDNA’s files which are marked with WWWOmega filetype. The
Crack-a-Mac contest discovered a problem with Lasso that allowed it to
read a SiteEdit Pro password file that would have been secure
otherwise.

Older versions of Lasso (now fixed)

 Programmer Guide • 257

.

.

.

.

.

.

.

.

NetForms

SiteEdit Pro is not a problem because admin password has always
been required to display WWWOmega files.

Secure Web Server

It is assumed that your web server software itself will never display files
that are marked with WWWOmega filetype. Unfortunately at this time
only WebSTAR does this correctly. All other servers present a risk.

For other servers, we suggest you create a “WebDNA” realm that is
password-protected so that visitors cannot display URLs leading to files
inside the WebCatalogEngine folder itself (where Users.db password
database is stored).

Password Security

It is assumed that the passwords to your system are secure and that
unauthorized people do not know what the passwords are.

Many web protocols make no attempt to encrypt passwords, so for
instance FTP and even HTTP realm passwords are sent clear-text
across the net. You are vulnerable to packet-sniffing attacks if you use
these protocols.

Different Kinds of Attacks

Guestbook

Problem: Anonymous visitor puts WebDNA into their guestbook
comments, and then ‘executes’ the guestbook.db file as though it were
a template.

Solution: Change filetype of guestbook.db to WWWOmega so
WebDNA won’t execute it. Make sure preferences don’t allow “.db” as a
template suffix.

 258 • WebDNA

Physical

.

.

.

.

.

.

.

Problem: hopefully this is obvious—people can erase/modify/view any
file on your hard disk. All credit cards and passwords are freely
available to anyone who has physical (or FTP) access to your server.
They can also steal your computer.

Solution: don’t allow unauthorized people into your server room. Don’t
give FTP password access to sensitive files (such as Users.db, SiteEdit
Passwords, etc). Change passwords frequently.

Viewing WWWOmega Files

Problem: Many programs assume that if they mark their files with
WWWOmega filetype, then those files will never be displayed to an
anonymous outsider. WebSTAR, WebDNA, and SiteEdit Pro honor this
security feature. Other web servers/CGIs (such as Quid Pro Quo,
NetForms, Lasso) will display these files, and as such can cause a
security breach. WebDNA’s sensitive files, such as Users.db and Order
files containing credit card numbers, are marked with this special
code—but if you have any other CGI or web server installed, they may
allow remote viewing of that file.

Solutions: Install the latest versions of Lasso, NetForms, etc. Add a
realm password for “WebDNA” so that outsiders cannot display URLs
inside your WebCatalog folder. Move your WebCatalog folder outside
the web server hierarchy, and give it an unusual name.

Change Preferences/Passwords Remotely

Problem: Outsiders may try to use WebDNA’s remote administration
features to change your preferences.

Solution: Do not give out any of your administration passwords.
WebDNA protects its preferences and Users databases as ‘special
cases’—it does not allow modifications without a proper admin
username/password.

Problem: Outsiders upload a new WebCatalog Prefs file via FTP or file
sharing.

 Programmer Guide • 259

.

.

.

.

.

.

.

Solution: Do not let outsiders have access to WebDNA’s folder. Do not
give out your FTP passwords.

Denial of Service

Problem: Mischievous visitors want to prevent others from accessing
your site, so they flood your site with requests, thus causing your server
to bog down.

Solution: Use your web server log to backtrack the IP address of the
offender, and ask their ISP to discontinue their account. Other than
that, there is not much you can do, other than to write some custom
WebDNA that senses the IP address and sends warning messages to
the user.

Too Many Returned Records

Problem: A variation of denial-of-service attack, this makes use of the
fact that one can set the number of returned records from a search via
a remote parameter (max=50) in the search URL. This can cause huge
amounts of data to be returned for each search.

Solution: Either build all of your search templates to use embedded
search contexts (which will never look at the URL value of max), or set
your WebDNA Preference for max returned records to a smaller
number.

Unintended Database

Problem: Outsider creates a ‘homebrew’ URL that performs a search
using a different database file than you intended. For instance, the
search results template provided in GeneralStore could be used to
display information from a database other than the GeneralStore’s
catalog.txt file.

Solutions: Never create a template that contains [username] or
[password] in its [FoundItems] loop unless that template is also
protected with [Protect Admin]. Make sure your WebDNA preferences
only allow “.db” and “.txt” as database extensions. Always use

 260 • WebDNA

embedded [Search] contexts so that outsiders cannot change the
db=xxx parameter.

Unintended Template

.

.

.

.

.

.

.

Problem: Outsider creates a URL that leads to a file (such as your
Users.db file) that is not a template, and displaying that file will either
reveal sensitive information or cause malicious WebDNA to execute.

Solution: WebDNA will not display WWWOmega files. Make sure your
databases have this filetype. Make sure “Require
HAS_WEBDNA_TAGS” preference is turned on. By default, WebDNA’s
[WriteFile] context creates files with WWWOmega filetype.

Packet Sniffing

Problem: Outsider with sophisticated packet sniffing software can see
your realm passwords and FTP passwords as they go by on the net.

Solution: This problem extends far beyond WebDNA, but is rare
because of the ‘wiretap’ difficult nature of the attack. Perhaps the only
solution today is to make sure you only access your sensitive data via
SSL.

Hierarchy

Problem: Outsider sends $ShowPage command that specifies a file
outside your web server’s hierarchy.

Solution: WebDNA prevents attempts to step outside the web file
hierarchy, but newer servers with multi-homing ability may someday
circumvent this. Aliases to folders also make it more difficult to maintain
a clear security map. To help with this, just make sure your WebDNA
preferences will only allow “.TMPL” suffixes for templates—which alone
should prevent outsiders from viewing sensitive files.

Aliases

Problem: Unwanted folders become visible to outsiders. Creating an
alias to a folder outside your normal web hierarchy can open such
folders to outside viewing. WebDNA automatically resolves aliases to

 Programmer Guide • 261

folders (and files) in its template parameters as thought they were part
of a standard URL path.

.

.

.

.

.

.

Solution: Be aware that folder aliases allow outsiders to access any
files in the resolved folder (only if the person knows the filename). Do
not create such aliases unless you intend for all the files in that folder to
be accessible.

AppleScript

Problem: Mischievous webmasters can create WebDNA templates that
contain unwanted AppleScript commands. WebDNA executes any
AppleScript placed inside its [AppleScript] context. Anyone who has the
ability to create or modify template files on your server can write any
AppleScript program. Since AppleScript has no security provisions, it is
possible to create scripts that erase the entire hard disk, access
sensitive information, or even change passwords.

Solution: Do not allow un-trusted people to create or modify template
files on your hard disk. Future versions of WebDNA may provide a
preference that disables AppleScript entirely (or forces it to be Admin
password-protected).

Command=Raw Views Sensitive Files

Problem: WebDNA’s Raw command allows outsiders to view the ‘raw’
WebDNA of any template. Templates can contain sensitive information
such as passwords (for the [Authenticate] tag) and proprietary
WebDNA.

Solution: The Raw command is protected with Admin-level passwords.
Do not give out any Admin passwords to un-trusted persons.

Mischievous Webmaster / Store Owner

Problem: WebMasters or store owners who have the ability to
create/modify files in their own WebDNA folders can write WebDNA
templates that display sensitive information. Because WebDNA
assumes that all templates are ‘trusted’ (meaning that no outsiders are

 262 • WebDNA

allowed to create files on your hard disk), it allows WebDNA to access
any database in any folder—even ones from other ‘storefronts’ on your
computer. Order files with credit card numbers are also easily
displayed.

.

.

.

.

.

.

.

Solution: Do not allow un-trusted people to create/modify WebDNA
templates on your hard disk. Similar to [AppleScript] issues.

Commerce: Price/Shipping/AccountNum Attack

Commerce: Stolen Credit Card

Commerce: Bad Credit Card Number

AREAS TO WATCH FOR SECURITY THREATS

Orders Folder

CompletedOrders Folder

EMail Folder

Uploading Files
In WebDNA, upload is not a single context. Inside of the StoreBuilder, there
are two files you should look at:

/admin/upload_file@.tpl

Also, the file:

/admin/upload_file.tpl is the one that displays the interface to the user and
sets up the variables for upload_file@.tpl as the destination. In this way, the
interface is reusable so that you can copy the two files wherever you wish
and pass the right parameters.

mailto:/admin/upload_file@.tpl
mailto:upload_file@.tpl

WebDNA Content Management System
WHAT IS WEBDNA CMS?
WebDNA Enterprise CMS is a client-server solution that will aggregate three
well-known patterns: CMS (Content Management System), RCS (Revision
Control System), and CVS (Concurrent Versions System). For the WebDNA
Enterprise CMS system, the functionality involved with these three different
aspects will be inseparable.

Development teams (“workgroups”) are created and individual users gain
membership to one or more of these teams. The concept of privilege-based
roles applies to team membership, meaning that given a context workgroup,
an individual user is assigned one or more roles. Privileges are assigned
statically to an individual role.

First, the authentication/privileges mechanism is the functions as the entry
point to consuming system functionality. A given user must first authenticate
prior to using the system. All content-manipulation/functionality will be
initiated and invoked via an intuitive GUI-based client, based on the familiar
file-browser “explorer” pattern.

 Programmer Guide • 263

 264 • WebDNA

Content Management System Component
The CMS aspect will allow users within a given development workgroup to
manage and organize their individual document/project development efforts
based on the familiar file/directory-structure paradigm. Depending on the
privileges assigned to the user, the user may, for example, create new,
move, and delete files and directories (content).

Revision Control System Component
The RCS aspect will track modifications made to content based on the
familiar check-out/modify/check-in paradigm. Given that modification history
will be persisted, the system will also allow rolling back to previous versions
should the need arise.

Concurrent Versions System Component
The CVS aspect is based on exclusive-locks. As such, it will track file-locks
and modifications in other workgroup’s work areas so that two users will not
be allowed to have the same content (but in a different work area) locked
concurrently. All modifications are submitted from a given workgroup’s work
area to a staging area, simply referred to as “Staging”. The revision/version
in Staging then becomes the master against which potentially disparate
versions in other workgroup’s work areas are compared.

Optionally, an admin (workgroup or sysadmin) can specify a structured
approval workflow/chain, indicating that various users must flag the request
as either approved or denied. In general, a workflow is a map of a set of
approval checkpoints. An approval “checkpoint” is simply a combination of a
workgroup user and his approval/denial. The actual approval checkpoint
map can vary but overall it is a collective indication of whether or not a given
submission request gets processed.

USING WEBDNA CMS
Note: There is a right-button context menu that works in both the tree view
and list view. For MAC users with only one button, there is a 'menu' icon in
the list view that pops up the same thing.

User Types
There are five 'roles' users can assume:

• WGadmin – This privilege provides administrative privileges for a
given workgroup.

 Programmer Guide • 265

• Editor – This privilege can edit content of a given workgroup, but

you cannot create new content or delete content.

• Author – This privilege can edit, create, or delete content in a given
workgroup.

• Viewer – This privilege has read only access.

• Unauthorized – This privilege provides no access. It is useful for

disabling access for a user who should not be fully deleted from the
system.

Every user can see the WorkGroup Admin tab. This is done to allow users to
see who belongs to a given workgroup. However, only a WGAdmin for that
particular workgroup can change the settings for users.

Approval Groups
The WGAdmin for a particular workgroup can establish the approval groups.
Once a approval group is created, the staging admin can then 'attach' an
approval group to any particular asset within staging’s files or folders. Any
time an asset is checked in, the check in process searches recursively from
that 'leaf' asset up the hierarchy until it finds an approval group.

For example: If you want one approval group for all of staging, you attach it
to the root staging folder. If you want a particular subfolder to have a
different approval group, you attach it to that subfolder. Setting a different
approval group for a subfolder will allow the recursive search to be
encountered first before any approval group 'above' it.

If you have an approval group assigned to a folder, and you have one file
that you DO NOT want any approval required ... create an 'empty' approval
group and attach it to that one file. It will be encountered first before the
approval group attached to the folder containing the file.

Staging Content
The 'staging' workgroup is the repository for all file change history. If you add
new files or folders in your respective workgroups, they have to be 'checked-
in' to become part of the staging repository. Likewise, if you delete a file or
folder, it needs to be checked-in for that change to affect staging. If there is
an approval workflow defined, the deletion has to be approved before it is
applied.

 266 • WebDNA

Deploying Content
There is a 'deploy' action under the Workgroup Admin tab, which launches a
separate dialog window for specifying a local production deployment path
relative to the file path of the staging folder for that CMS instance. Using the
relative path option allows the user to select any local path to copy the
staging files to. Once this option is executed, the deployed files will be listed.

Since deploying folder and files to production could be local or remote
operations, or involve any number of 'custom' issues for a given customer,
this one template will be unencrypted so the user can create their own
custom WebDNA to automate the deployment from the staging area into
production.

Note: When deploying files to a production environment, it is necessary to
flush the databases in the production environment prior to migrating the
staged files. This will prevent databases that are cached in memory from
overwriting newly migrated databases.

Uploading Multiple Files
There is a mechanism to "add a file" and to "upload" a file over an existing
file (if it is already checked out). For 'bulk' uploads of numerous files, there is
an 'upload' folder under the CMS instance directory where a user can
perform bulk FTPs of files. After the bulk upload, the user can use the
"upload files" action, which will then import all of the files from that folder into
the CMS system.

Note For Uploading Binary Files
Binary files are editable in the CMS, but will be treated as ASCII-type in the
editor. The only way to update or get new versions of a binary file is to check
out the file from Staging and then right-mouse click to use the Upload
function. This function will update and replace the file in the CMS instance (if
it has been checked out), so that the most recent version can be checked
back in to Staging.

Advanced WebMerchant Topics
WebMerchant is built as an open source product. It is fully modifiable and not
limited to only near real time processing. For example, for those internet
payment methods that only support real time debit or credit purchase
transactions, a direct link between the customer and the web payment

 Programmer Guide • 267

merchant can occur while the shopping cart transaction is held off to the side
until the Internet cash process completes.

When a transaction payment method authorization results in a bad order,
WebMerchant can send an email to alert the store clerk to call the customer
to find out what the problem is in following through with the order. When a
transaction payment method authorization results in a good order, WebDNA
logic can be used to automate SKU quantity-on-hand decrementing to reflect
the adjusted stock on hand for an item. The adjustment may be derived from
the import of a Quickbooks (or other accounting software package) file once
per day.

USING ACCOUNT AUTHORIZER
There are times when you wish to receive payment for items without using a
credit card—perhaps your company provides customers with some kind of
purchase order authorization or special “On Account” payment. You can
verify payment in this case by making changes to the AccountAuthorizer.inc
template file. The sample file provided will authorize account number
4000300020001000 as “good” and any other value as “bad”. Changing the
WebDNA in AccountAuthorizer.inc to your own custom code (perhaps a
lookup into a database of known good account numbers) gives you the
flexibility to design your own payment scheme. WebMerchant only uses this
scheme when the “payMethod” field in the order file is set to “AC”, as
opposed to "CC" for credit card payments.

Note: You can use both types of payment methods and direct WebDNA to
set the payMethod field accordingly when the order payment method is read.

USE OF EXTERNAL ACCOUNTING SOFTWARE WITH ORDER
FILES
You can use different accounting software packages to import order file data
from WebMerchant. For example, in the Quickbooks or Manage your own
Books software product, you can take the name of the WebMerchant order
file as an import parameter and upon running the export template it will be
appended it to the .qif format. File specifics and modification of exporting
such information are provided in the software package you are using. More
information on the export is in the example export template.

 268 • WebDNA

Appendices

File Formats
WebDNA uses the following file formats:

• Database format

• Shopping Cart/Order file format

• Browser info.text format

• Email format

DATABASE FORMAT
WebDNA can open up unlimited databases, each of which can have its own
field structure. The number of records is only limited by the amount of RAM
given to WebDNA (when used as a plug-in, you must give more RAM to
WebSTAR itself). In order for WebDNA to know the name of each field in a
database, the first record must contain the field names. However, since many
export options do not let you save the field names as the first record, we’ve
provided a way to separate the file with the field names from the data itself.

If WebDNA detects a file in the same location as the database, whose file
extension (suffix) is .hdr instead of .db or similar, it will use the contents of
the .hdr file as the list of field names.

Tab-Delimited Format: The following is an example of a tab delimited text
file database. It was created in FileMaker Pro and exported using the “Tab-
Delimited” format - because FileMaker does not automatically put field
names across the top of tab-delimited export files, we had to manually paste
the field names into the text file after FileMaker created it:

 Programmer Guide • 269

Contents of Tab-Delimited format AddressList.db file (the .db file extension is
a convention only: it is not required):

The fields are separate by tabs, as usual.

Merge Format: following is an example of a database that has been
exported to Merge format from a FileMaker Pro database. Notice that
FileMaker automatically puts the field names across the top of the file, so you
don’t have to make any changes after exporting.

Contents of Merge format AddressList.db file (the .db file extension is a
convention only: it is not required):

name,address,city,state,zip
“Bruce”,”11880 Central Ave”,”San Diego”,”CA”,”92122”
“PCS”,”11770 Bernardo Plaza Court”,”San Diego”,”CA”,”92128”

An example of separating the field headers from the data is the following.
Suppose you export a tab-delimited list of your data, but it does not contain a
field name record at the top. The database export, “data.txt”, might look like
the following:

John.....contact.....10
Grant....contact.....13
Jay......contact.....12

Rather than opening the file and pasting in the field name header each time,
simple create a file named “data.hdr” that contains the field names and place
it in the same folder as the tab delimited database. WebDNA automatically
looks for this file and does not have to be specified as an argument to the
“db” parameter.

name.....type.....stage

Notice that the .hdr file should only contain one line of text and end with a
carriage return. If your database is tab delimited, the .hdr file should be tab
delimited. If the database is a Merge format (comma delimited) then the .hdr
file should be Merge format as well.

Note: WebDNA always saves databases in tab-delimited format, regardless
of what they originally were. Any Delete, Append, or Replace action will
cause a database to be written to disk in tab-delimited format.

 270 • WebDNA

SHOPPING CART/ORDER FILE FORMAT
The shopping cart (and order file) format is a tab-delimited text file in the
following format:

H <tab> Version <tab> Date <tab> Time <tab> Email
<tab> PayMethod <tab> AccountNum <tab> ExpMonth
<tab> ExpYear <tab> Name <tab> Company <tab> Address1
<tab> Address2 <tab> City <tab> State <tab> Zip <tab> Phone
<tab> TaxRate <tab> ShipVia <tab> ShipCost <tab> Header1
<tab> Header2 <tab> Header3 <tab> Header4 <tab> Header5
<tab> country <tab> ShipToEmail <tab> ShipToName <tab>
<tab> ShipToCompany <tab> ShipToAddress1 <tab> ShipToAddress2
<tab> ShipToCity <tab> ShipToState <tab> ShipToZip
<tab> ShipToCountry <tab> ShipToPhone <tab> Header6
<tab> Header7 <tab> Header8 <tab> Header9 <tab> Header10
<tab> Header11 <tab> Header12 <tab> Header13 <tab> Header14
<tab> Header15 <tab> Header16 <tab> Header17 <tab> Header18
<tab> Header19 <tab> Header20 <tab> Header21 <tab> Header22
<tab> Header23 <tab> Header24 <tab> Header25 <tab> Header26
<tab> Header27 <tab> Header28 <tab> Header29 <tab> Header30
<tab> Header31 <tab> Header32 <tab> Header33 <tab> Header34
<tab> Header35 <tab> Header36 <tab> Header37 <tab> Header38
<tab> Header39 <tab> Header40 <tab> NonTaxableTotal
<tab> TaxableTotal <tab> TaxTotal <tab> ShippingTotal
<tab> CartIPAddress <tab> CartUsername <tab> CartPassword
<tab> Precision <tab> TaxableShipping <tab> AuthNumber
<tab> ResponseText <tab> Status <tab> BatchNumber
<tab> ReferenceNumber <tab> SequenceNumber
<tab> ItemNumber <return>

Followed by multiple line items (one per sku, tab-delimited, return at end):
L <tab> sku <tab> quantity <tab> price <tab> taxable
<tab> canEmail <tab> unitshipCost <tab> textA
<tab> textB <tab> textC <tab> textD <tab> textE <return>

WebDNA saves Shopping Cart files in a folder you specify in the
preferences. If the ShoppingCartFolder preference is “shopping carts/”, then
WebDNA looks for a folder called “shopping carts” in the same folder as the
template being displayed. If the preference is “../shopping carts/” then
WebDNA looks for the folder one level “up” from the template.

Shopping Cart files stay in the shopping carts folder until they expire (24
hours of inactivity), or until the visitor presses the “Purchase” button on an
invoice form. Then the file is moved to the Orders folder defined in the
preferences. If you own WebMerchant, it will pick up the orders that appear

 Programmer Guide • 271

in that folder and process them accordingly. WebDNA itself will do nothing to
the files once they are moved to the Orders folder.

BROWSER INFO.TXT FORMAT
The Browser Info.txt file is a list of information about various web browsers
(e.g. Netscape, Microsoft Internet Explorer) that tells WebDNA what the
HTML capabilities of each browser are. WebDNA can hide HTML from
browsers that do not understand certain tags: for instance, Netscape 1.0
cannot understand <TABLE>, but Netscape 1.1 can. This helps you design a
single web page that will automatically be tailored for each browser that visits
that page.

Browser Name <tab> HTML Level <tab> SSL-Aware?
Mozilla/1.0 1 T
Mozilla/1.1 1 T
Mozilla/1.2 2 F
Mozilla/1. 2 T
Mozilla/2. 2 T
Mozilla/3. 3 T

The list above says that Netscape 1.0x (Mozilla/1.0) will see text inside
WebDNA’s [HTML1][/HTML1] tags, and that it is SSL-aware.

The same is true for Netscape 1.1x (Mozilla/1.1). Microsoft’s Information
Explorer identifies itself as Mozilla/1.2, but MSIE does not understand SSL,
so we have marked it as “F” (false) in the list above. This means WebDNA
will not show any text inside [secureBrowser][/secureBrowser] to MSIE
browsers.

Netscape 1.3 and above are marked as [HTML2], with SSL true

Netscape 2.x and above are marked as [HTML2], with SSL true

Netscape 3.x and above are marked as [HTML3], with SSL true

Any browser not listed will be assumed to be [HTML1] and non-SSL.

As new browsers reach the market, you can modify this file so that WebDNA
can display correct HTML for each one.

One thing to remember is that [HTML1], [HTML2], and [HTML3] are arbitrary
classifications that do not correspond to W3.org’s definitions of HTML levels.
They are just 3 different classifications that you can make however you wish.
If you do not include special HTML code for Netscape 3.x, then Browser

 272 • WebDNA

Info.txt would work better if the last line of the file said, ‘Mozilla/3. 2 T’ If you
want to set up a site that displays information as a table to table-capable
browsers and uses a non-table way to display the information to non table-
capable browsers, then there is no need to use [HTML3] at all. You would
only use table [HTML2] and non-table [HTML1] ways to display information.
Even if you used frames, only 2 different sets of [HTML] need to be used
because the frame information is put inside of a HTML comment <!> .

EMAIL FORMAT
WebDNA does not actually send the email; it writes a special file into an
Email Folder, which the separate Emailer program uses to send the email. If
the Emailer program is not running, no emails will be sent. The Emailer
program will not erase old outgoing email files until it has successfully
completed sending the email. On Macintosh systems, Emailer is a separate
program, which must be running in order for emails to be sent. On Windows,
an internal thread inside of WebDNA provides the email functions itself. On
UNIX systems, the standard mail program built into the system itself is used;
WebDNA shells out a command to the system mailer each time an email is
sent.

If for some reason you wish to send emails from your own CGIs or programs
(without using WebDNA’s built-in [SendMail] context), you may simply write a
text file into the EMailFolder specified in the EMailer preferences (Macintosh
and Windows only). The file must have the following format (only the text
between the lines goes into the email file). The first four standard headers
are required, any others are optional. A blank line must follow the last header
line. All the remaining text is part of the body of the message.

------Text file saved into EMail folder----
to: one or more email addresses
from: email address
subject: subject text
Date: full date
Any other MIME headers
Body text

Example:
---- /WebCatalogEngine/EMailFolder/SomeFileName.txt ---
to: sales@webdna.us,info@webdna.us
from: me@my domain.com
subject: This is the subject line
Date: Mon, 05 Jan 1998 15:59:33 -0500
body...
body...

 Programmer Guide • 273

body...

Formulas
When your customers Add or [AddLineItem] products to their shopping cart,
WebDNA obtains the price of the product in one of two ways: the price can
come from a field in the database called “price”, or it can be calculated based
on a formula. To prevent “hacking”, WebDNA never allows remote users to
set product prices - but you can still customize pricing by creating a formula
to calculate a different price based on any WebDNA tags, such as
[username], [zip], or even a [math] calculation. Table 1 provides a description
of each purchase-related field and the WebDNA calculation method used for
each field.

For sensitive information, such as the markup on an item, the incoming web
variable containing this information should never be pulled directly. Instead,
add a SKU lookup to give back the retail price that also may reflect any
adjustments such as a 10% discount for a repeat customer or a special.

Note: The TeaRoom example uses a formula to calculate price, taxRate,
unitShipCost and overall shipping costs based on the customer’s shipping
address.

Every time a product is added to the shopping cart, WebDNA calculates the
item’s price and the unitShipCost as follows:
1. Look for a file called Formulas.db in the same folder as the shopping cart

template itself, and use the default values for “quantity”, “price”, etc. as
the initial values. If you would like to use the default price value ([price])
as a variable in the “price” calculation, the default value will be used.

2. If Formulas.db contains a “price” formula, then evaluate the WebDNA
expression (in the context of the current shopping cart file, so tabs such
as [zip] and [sku] are available).

3. Set the price of the product based on the calculated formula, or if no
formula is found then simply use the “price” field from the product
database that corresponds the item’s SKU.

4. Repeat Steps 1 through 3 above for “unitShipCost”.
5. Repeat Steps 1 through 3 above for “taxable”.
6. Repeat Steps 1 through 3 above for “taxRate”, which is applied to the

entire order, not just the one item that was added. If no formula is found,
then look for a form variable called “taxRate” and use that instead.

 274 • WebDNA

7. Repeat Steps 1 through 3 above for “shipCost”, which is applied to the
entire order, not just the one item that was added. If no formula is found,
then look for a form variable called “taxRate” and use that instead.

 Programmer Guide • 275

Table 1. Purchase Field Formulas and WebDNA calculation method

Field WebDNA Calculation Method Used

Price Lookup SKU in database, or calculate from formula
(applied only to this lineItem being added).

UnitShipCost Lookup SKU in database, or calculate from formula
(applied only to this lineItem being added).

TaxRate Optional parameter to Add command, or calculate from
formula (applied to entire order file).

ShipCost Optional parameter to Add command, or calculate from
formula (applied to entire order file). This number is
added to the sum total of all the unitShipCost values to
arrive at the shippingTotal for the whole order.

Taxable Lookup SKU in database, or calculate from formula
(applied only to this lineItem being added). The result of
the formula must be either T or F.

The GeneralStore example uses the following formula for price:

[lookup db=catalog.txt&lookInField=sku&value=[sku]

&returnField=price]

This formula looks up the price of the product in the database and returns it
unchanged. This is for demonstration purposes only, because in this
particular case, the formula calculates exactly the same price as though you
had not specified a formula at all. To do something more complex, you might
perform some calculation based on the visitor’s [username] information, like
so:

[math][showif [username]=GRANT]0.0*[/showif]

[lookup db=catalog.txt&lookInField=sku&value=[sku]

&returnField=price]

[/math]

 276 • WebDNA

This example would set the price to $0 if the user was logged in as “GRANT”,
otherwise the price would be unchanged.

Example Shipping Cost Strategies

If your charges for shipping are... then the formulas would be as
follows:

$6.95 + $2.00 per additional item shipCost 4.95 (in Formulas.db)

unitShipCost 2.00 (in
Formulas.db)

When there is 1 item in the cart,
the shipTotal will be 4.95+2.00 =
6.95

$15.00 flat shipCost 15.00 (in Formulas.db)

unitShipCost 0.00 (in
Formulas.db)

$9.95 base charge + each item
has its own handling charge (often
based on weight)

shipCost 9.95 (in Formulas.db)

“unitShipCost” field in your product
database contains numeric cost
for each item. Erase unitShipCost
formula from Formulas.db, so that
product database field is used
instead of formula. When there is
1 item in the cart, the shipTotal will
be 9.95 + [unitShipCost] taken
from that SKU’s record in the
product database.

$15.00 flat in the state of NJ,
$35.00 everywhere else

shipCost [ShowIf
[ShipToState]=NJ]15.00[/ShowIf][
HideIf][ShipToState]=NJ]35.00[/Hi
deIf]

unitShipCost 0.00 (in
Formulas.db) 15% of the subtotal
shipCost

Example Shipping Cost Strategies

 Programmer Guide • 277

15% of the subtotal shipCost
[math][subTotal]*.15[/math] (in
Formulas.db)
unitShipCost 0.00 (in
Formulas.db)

ISP Sandbox
What does a WebDNA Sandbox do?
Basically it provides a way for a WebDNA admin to designate a particular
folder, and its subfolders, as a WebDNA Sandbox. This means that WebDNA
templates running from within that folder will not be able to view, manipulate,
delete, or create any files outside of their root Sandbox folder.

This enables a WebDNA ISP to allow multiple WebDNA developers access
to the same machine knowing that each sites is 'locked down' to its own root
folder.

But that's not all...

Each sandbox site has its own 'WebCatalog Prefs' file called Sandbox
Prefs, which includes nearly every preference you would find in the master
WebCatalog Prefs file.

Each Sandbox has its own Triggers process

Each Sandbox has its own Emailer process

Each Sandbox has its own Users database

Each Sandbox has its own Admin section, which includes nearly all the
templates you would find in the main WebDNA admin pages.

Each Sandbox has its own Globals, EmailFolder, EmailCompleted folder,
etc....

If fact, each Sandbox has nearly every database, template, and system
folder you would normally find in the main WebDNA engine folder.

 278 • WebDNA

Some Experimentation

Lets try a database search on an arbitrary db file that we know is outside the
Sandbox...

[search db=../../../../test.db&eqIDdata=1]
[numfound]
[/search]

Results....
WebDNA Sandbox security does not allow access to:

*\test.db*An unknown error occurred:
DBError
../../../../test.db

WebDNA Changes

Here is a list of WebDNA Tags and Contexts whose behavior is altered when
used inside a WebDNA Sandbox...

These contexts can only operate on files and or folders that exist within the
Sandbox root folder, or the sandbox 'globals' folder when the '^' prefix is
used.

[appendfile]
[writefile]
[renamefile]
[deletefile]
[movefile]
[copyfile]
[fileinfo]
[listfiles]
[waitforfile]
[copyfolder]
[createfolder]
[deletefolder]

These operations can only operate on a cart or files that exists within the
sandbox root, or the sandbox 'globals' folder when the '^' prefix is used.

[orderfile]
[purchase]
[removelineitem]
[clearlineitem]
[setlineitems]
[setheader]

 Programmer Guide • 279

Will only flush the databases that exists within the sandbox root or globals
folder.

[flushdatabases]

These contexts will only operate on database files that exist within the
sandbox root or globals folder.

[commitdatabase]
[listdatabases]
[closedatabase]
[listfields]
[search]
[lookup]
[replace]
[append]
[delete]

Uses the 'local' sandbox 'users.db' file.
[protect]

Both these tags use the 'format' preferences in the local sandbox prefs file.
[date]
[time]

Can only include a file that exists within the sandbox root or globals folder.
[include]

Uses the local sandbox email settings. Resulting email files are written to the
sandbox 'EmailFolder'.

[sendmail]

These contexts require special handling, discussed later.
[object]
[dos]
[applescript]

Uses the local sandbox 'StandardConversions.db' file. If a database is
specified, it must exist within the sandbox root or globals folder.

[convertchars]

Can only be used with a database that exists within the sandbox root or
globals folder.

[convertwords]

Misc. Sandbox Notes

 280 • WebDNA

The '/' path prefix will be relative to the Sandbox root folder.

The '^' global prefix will refer to the Sandbox globals folder and not the main
WebDNA globals folder.

The 'absolute path' specifier '*' can still be used with a sandbox, as long as it
refers to a path that exists within the sandbox root or globals folder.

WebDNA error messages will be retrieved from the sandbox
ErrorMessages.db, and not the main WebDNA ErrorMessages.db

WebDNA error logs and debug files will be created within the sandbox
system folder, and not the main WebCatalogEngine folder.

Shell, DOS, Applescript

The [shell], [dos], and [applescript] contexts require special handling when
used within a WebDNA Sandbox.

Shell, DOS, and Applescript code can no longer be explicitly defined within
these contexts, when used in a WebDNA Sandbox. Instead, the desired code
must be submitted to the WebDNA admin for approval. If approved, the 'code
snippet' is added to the WebDNA Sandbox 'Scripts' database, with a unique
ID code. This ID code is then used by the Sandbox programmer.

For example...

A WebDNA sandbox programmer wants to execute the DOS command. "dir
c:\". The programmer submits the code snippet, "dir c:\", to the WebDNA
admin. The admin approves the code, and inserts the code into the WebDNA
Sandbox Scripts database with a unique ID of '111'. The WebDNA admin
then returns the ID to the Sandbox programmer. The Sandbox programmer
then uses the ID as follows...

[DOS scriptID=111][/DOS]

The same applies when using the [shell] context.

The [object] context is handled in a slightly different way. For this case, the
submitted 'code snippet' is the 'parameter list' that would normally be passed
into the context.

For example...

 Programmer Guide • 281

[OBJECT objname=SystemInfo.SysInfo.1&type=0[!]
[/!]&call=GetFreeDiskSpace[!]
[/!]¶m1=C:\¶m1type=str][/OBJECT]

would become...

[OBJECT SCRIPTID=123][/OBJECT]

The WebDNA admin having recorded the text:
"objname=SystemInfo.SysInfo.1&type=0[!]
[/!]&call=GetFreeDiskSpace[!]
[/!]¶m1=C:\¶m1type=str"

into the Sandbox scripts database with an ID of 123.

Pre and Post Parse Scripts
The pre-parse and post-parse scripts exist as two 'special' WebDNA files in
the WebCatalog engine folder, or WebDNA Sandbox system folder. These
are named, as you might guess, 'PreParseScript' and 'PostParseScript'.
When enabled, any WebDNA that is contained in those scripts is process
before, or after, every WebDNA page request.

The Pre-Parse Script

The pre-parse script is an ideal place to put 'global' function or variable
definitions. It is also a great place to put HTML comment blocks that should
appear at the top of WebDNA page results. When combined with a WebDNA
Sandbox, this level of functionality can be considered as 'application' level
functionality, as each WebDNA Sandbox will use a separate set of pre-parse
and post-parse scripts.

Here is an example of a pre-parse script you could use to initialize a series of
function definitions. In this example the function definitions exist as separate
include files in a sub-folder called, 'FunctionDefs'.

Contents of the 'PreParseScript' file...
[!] An example Pre-Parse Script that loads function

definitions [/!]
[!]
 Include My Function Definitions.

 282 • WebDNA

[/!]

[text]results=
[listfiles path=^FunctionDefs]
[showif [isfile]=T]
[include ^FunctionDefs/[filename]]
[/showif]
[/listfiles]
[/text]

If this example pre-parse script was 'live', then every WebDNA page request
would have access to any function definitions that were processed as a result
of the script execution.

The Post-Parse Script

The post-parse script is executed at the end of every WebDNA page request.
This enables the WebDNA programmer to 'wrap' WebDNA code around the
results of every WebDNA template that is processed. So this is an ideal
place to insert code that generates 'global' (or 'application' when inside
WebDNA Sandbox) header or footer messages. Or as a place to put server,
or Sandbox, 'logging' code. It can even be used to insert WebDNA code that
will 'strip' or modify the page results, perhaps to remove unwanted white-
space from the HTML before it is return to the client.

There is a new, very important, WebDNA tag that you will almost always use
inside the post-parse script. This tag is:
[WEBDNA_TEMPLATE_RESULTS]. This tag represents the results of the
requested WebDNA template. This tag allows you to 'wrap' you own
WebDNA code around the page results. So, if you enable the post-parse
script feature, you will need to include the
[WEBDNA_TEMPLATE_RESULTS] tag, somewhere in the WebDNA code.

Here is an example of a post-parse script you could use to insert an HTML
footer message at the bottom of every WebDNA page request.

Contents of the 'PostParseScript' file...
[!] Example code to place a 'footer' message at the bottom

of every page request [/!]

 [showif [WEBDNA_TEMPLATE_RESULTS]^

 Programmer Guide • 283

How to use the scripts

Both the Pre-Parse and Post-Parse scripts are disabled by default. Even if
the scripts are 'enabled', the stock scripts contain little to no 'active' WebDNA
code. The shipping version of WebDNA 5.0 may include pre-defined
functions that will be loaded by the pre-parse script.

You enable the scripts via the WebDNA admin, preferences page. The
scripts can be independently enabled or disabled from that page. There is
also a 'link', for each script, that will lead to a page where the script can be
edited and saved.

IMPORTANT:
You should have ftp access to the folder containing the scripts, before trying
to enable and edit them. This is in case you insert bad HTML or WebDNA
code that renders all pages unreadable (which would render the admin
pages unreadable as well). Ftp access to the script files will ensure that you
have a way to 'correct' fatal errors in the script files. For WebDNA Sandbox
sites, malformed scripts would only effect pages served from that Sandbox.

To enable, disable, view, or edit the pre_parse or post-parse scripts, select
the 'Prefs/...Admin...' menu item (in the lab 'source' view). When the admin
page is displayed, clink on the 'Preferences' link in the left pane. You will see
the pre-parse and post-parse script options at the bottom of the 'General'
section.

Triggers
Triggers provide a mechanism for doing something on a regular timed basis,
or when a certain action occurs. Currently only time-based triggers are
provided, but in the future new types of triggers we will added to perform an
action when ever a database is modified or a template displayed.

Triggers do their work by simulating a browser hit to a URL. They act as if
you had manually used a browser to reload a page at a particular time each
day. This gives you the flexibility to create as much complex WebDNA as you
like, and to test it by simply using a browser to visit that URL. Once you have
finished creating and testing the template, then enter its URL into a trigger
and it will be executed on schedule from then on.

The URL must be of the form http://www.server.com/folder/file.ext (the same
as you would see in a browser window—in fact, it is probably easiest to

http://www.server.com/folder/file.ext

 284 • WebDNA

simply copy the URL directly from your browser (window). There is no
restriction on the web site in the URL, so you can actually have triggers that
hit any web server in the world.

Because it is possible that the URL will fail for some reason (timeout, bad
connection, bad password), triggers have a timeout and retry interval. These
numbers are used to tell the trigger how long it should wait before attempting
the URL again. Triggers look for a string of text (which you specify) that tell
them the trigger was successfully executed. Often the text “<html>” is
sufficient, but you can put more sophisticated WebDNA into a page to create
more detailed success information.

The single Triggers.db file must be in the main program folder (where
Users.db, ErrorMessages.db, etc. reside). An example of a useful time-based
trigger is one that looks through the ShoppingCarts folder once per hour and
deletes any that are more than 24 hours old. Another example is a trigger
that looks for new order files in the Orders folder and initiates a credit card
transaction using credit card software such as ICVerify, MacAuthorize, or
CyberCash. Once the transaction is cleared, the trigger URL’s WebDNA
could continue by sending fulfillment emails and updating an inventory
database.

Trigger Fields:

SKU: A unique number that makes it easier to identify a particular trigger

Trigger: Currently only TIME is allowed here, but in the future we will add
values like APPEND, DELETE, REPLACE, SHOWPAGE, etc.

Param: For TIME triggers, this is a specially formatted string of numbers and
asterisks that represent the time the trigger should execute. For example, to
cause a trigger to execute 5 seconds after each minute, the text would be Y
M D H M S (Year Month Day Hour Minute Second) “* * * * * 5”. To cause a
trigger to execute at 9:15 PM every day, the text would be “* * * 21 15 0”.

Param Field Values:

Year * or actual year such as 1998

Month * or month of year such as 6 for June

Day * or day of month such as 28

Hour * or hour of day (24 hour clock) such as 23 (11 PM)

 Programmer Guide • 285

Minute * or minute of hour such as 59

Second * or second of minute such as 15

NextExecute This value gets changed automatically each time a
trigger is executed. It is changed to the date and
time of the next scheduled execution of this trigger.
If you do not want a trigger to start until a future
date, you can preset this to the first date you want it
to execute. After that, it is updated automatically.

Enable T or F to enable or disable the trigger

ExecuteURL Full URL to the template that you want executed at
trigger time

User Optional username for this page. This is the same
as an authenticated username that the [protect] tag
uses. Requiring a username/password enables you
to create triggers that outside visitors cannot view.

Pass Optional password for this page. This is the same
as an authenticated password that the [protect] tag
uses. Requiring a username/password enables you
to create triggers that outside visitors cannot view.

WasGood A string of text that is returned from the URL that
indicates the trigger was successfully executed. The
trigger looks for this text anywhere in the returned
HTML from the URL page. Often <html> is sufficient
to tell the trigger that it successfully received the
page.

TimeoutSeconds Number of seconds to wait for the URL to complete
before giving up and trying again

RetrySeconds Number of seconds to wait before retrying the
trigger.

WebDNA Software Corp. grants you a personal, non-transferable, non-exclusive
license to use this copy of the software program and the accompanying documen-
tation ("Software") according to the following terms and conditions:

1. License and Restrictions

(a) This agreement grants you the right ("License") of use of one copy of the
enclosed WebDNA Software Corp software on any single computer at any time. You
may not copy or load the Software onto the same or additional computers or use
the Software on a network unless you have purchased additional licenses for each
instance of use.

(b) The Software is owned by WebDNA Software Corp and is protected by U.S.
copyright laws and international treaty provisions. You must treat the Software just
like a book or other copyrighted item, except that you may (i) make one copy of the
Software program for backup or archival purposes, and (ii) transfer the Software
program onto a single computer's hard disk or solid state storage. You may not
copy any Software documentation provided to you.

(c) This Agreement is your proof of License to exercise the rights granted herein,
and must be retained by you. You may not lease or rent the Software but you may
transfer your rights under this Agreement on apermanent basis, provided that you
transfer the Software, accompanying documentation, as well as this Agreement,
and that the recipient agrees to the terms of this Agreement. You may not modify,
merge, decompile or reverse-engineer the Software, and you may not remove or
obscure the WebDNA Software Corp, trademark or copyright notices in the
Software or documentation.

(d) If you are an agency, department or other entity of the United States govern-
ment, you shall be subject to restrictions of Restricted Rights for computer software
developed at private expense as set forth in FAR 52.227-14, FAR 52.227-19 and
DOD FAR Supplement 252227-7013(c)(1)(ii), including Alternate III and successors
thereof, as applicable.

(e) Periodically, the software will make a secure SSL connection to WSC's
 server and report the following information: Product Name, Product Version, Serial
Number, Host Name. The server will log the information and may send back a plain
text message that will be displayed on the client's Administration page. This mes-
sage will likely contain information about available product updates and patches.

2. Title
You acknowledge and agree that all right, title and interest in and to the
Software, and all intellectual property rights therein, shall remain the
property of WebDNA Software Corp. You have a license to use the Software only an
d no ownership or proprietary rights to the Software are transferred to you.

3. Software Limited Liability and Disclaimer
WEBDNA SOFTWARE CORP. MAKES AND YOU RECEIVE NO WARRANTIES OR
CONDITIONS IN CONNECTION WITH THE SOFTWARE, EXPRESS, IMPLIED,
STATUTORY OR IN ANY OTHER PROVISION OF THE LICENSE OR COMMUNICA-
TION BETWEEN YOU AND WEBDNA SOFTWARE CORP. WEBDNA SOFTWARE
CORP. SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NONIN-
FRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
SOME STATES DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO
THE ABOVE EXCLUSIONS MAY NOT APPLY TO YOU.

4. Limitation of Liability
WEBDNA SOFTWARE CORPS'S LIABILITY UNDER OR ARISING OUT OF THIS
LICENSE WITH RESPECT TO THE SOFTWARE, WHETHER FOR BREACH OF
CONTRACT OR TORT OR OTHERWISE, SHALL NOT EXCEED THE AMOUNT THAT
YOU PAID FOR THE SOFTWARE. IN NO EVENT WILL WEBDNA SOFTWARE CORP.
BE LIABLE FOR ANY DAMAGES FOR LOSS OF DATA, LOST PROFITS, COST OF
COVER OR OTHER SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT
DAMAGES ARISING FROM THE USE OF THE SOFTWARE OR ACCOMPANYING
DOCUMENTATION, HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY.
THIS LIMITATION WILL APPLY EVEN IF WEBDNA SOFTWARE CORP OR AN
AUTHORIZED DISTRIBUTOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE, AND NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF
ANY LIMITED REMEDY, SOME STATES DO NOT ALLOW THE LIMITATION OR
EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES,
SO THE ABOVE LIMITATION MAY NOT APPLY TO YOU.

 288 • WebDNA

Support
Though WebDNA Software Corporation is not responsible for maintaining or helping
you use the Software, WebDNA Software Corporation does, at its discretion, o�er
support via the following options:

 • Our Web Site: http://www.webdna.us

 • Our support forum and mailing lists:

 Sign up at http://www.webdna.us

 • Direct email support: support@webdna.us

 Programmer Guide • 289

Glossary
Command − WebDNA commands direct WebDNA to perform various

functions. They are sent directly to the application via URL’s.
WebDNA commands are embedded in a URL and give an explicit
context to a particular template being displayed.

Context − A WebDNA context encloses a block of text and requires a
beginning and ending tag. Like HTML enclosing tags, the ending
WebDNA context tag is specified with the name of the context
preceded by a forward slash “/”. Like WebDNA tags, contexts are
enclosed in square brackets rather than angle brackets as well.

HTML Form − HTML forms are the standard means for having a visitor send
information to a web server. All the data contained in a form, both
hidden data and data entered by the visitor, is bundled up and sent
to WebDNA via the web server. An HTML form is simply a collection
of <input> fields with an associated name/value pair. The form’s data
is sent to the server in a manner similar to the name/value pairs used
to specify WebDNA parameters.

Internet Storefront − See web store.

Store − See web store.

StoreBuilder − StoreBuilder is an open set of WebDNA templates that allow
you to create as many eCommerce sites as you web server will
allow.

Storefront − See web store.

Tag − A WebDNA tag is just like an HTML tag with one major exception: It
never “exists” as far as a browser is concerned. Instead, it is
replaced by text (any valid HTML) on the server by WebDNA before
being sent to the browser. Think of WebDNA tags as server tags,
and HTML tags as browser (client-side) tags.

Template − A predefined web page that can control page layout (i.e., text
fonts, colors, page design, colors and graphics), as well as
functionality (e.g., emailer form, product order form, customer login
page, etc.).

 290 • WebDNA

Trigger − In WebDNA, a trigger provides a mechanism for doing something
on a regular timed basis, or when a certain action occurs.

Web − (a.k.a., the World Wide Web or WWW) an Internet feature housing
web sites and their corresponding web pages from Internet sites all
over the world.

WebDNA (the product line) − WebDNA products are Internet applications
that work with your existing web server allowing you to design web
applications with all the features found in the leading sites.

WebDNA (the language) − WebDNA is a scripting language for creating
Web sites. It adds functionality to a web server, and is used to tell
the WebDNA products what to do. WebDNA exists in HTML files on
your server or within URL’s sent by your browser.

WebMerchant − WebMerchant is a sophisticated program, effortlessly
handling the automated payment processing capabilities of
CyberCash, ICVerify. MacAuthorize, and other payment systems.

Web Store − An eCommerce catalog used to advertise products and
services through the World Wide Web portion of the Internet (a.k.a.,
store, storefront, and other names).

 Programmer Guide • 291

Index
About This Manual

Structure, i
Advanced WebMerchant Topics, 266
Archive

Talk List, 251
Banner Ads

Generating Online, 252
Broswer Info

GetMIMEHeader Tag, 190
Brower Info

GetCookie Tag, 189
Browser Info, 189

BrowserName Tag, 189
IPAddress Tag, 190
IsSecureClient Tag, 190
ListCookies Context, 190
ListMIMEHeaders Context, 192
Referrer Tag, 193
SetCookie Tag, 193
SetMIMEHeader Tag, 194

Browser Info.txt Format, 271
Commands

Add, 98
Append, 77
Clear, 104
Command=Notation, 247
Delete, 78
FlushCache, 178
FlushDatabases, 180
NewCart, 107
NewCartSearch, 106
Purchase, 110
Quit, 89
Raw, 159
Remove, 117
Replace, 93
Replacing Commands with Contexts,

23
Search, 65
Searching, 21
Show Cart, 122
ShowPage, 129
Technical

Raw Command, 184
Using Contexts vs. Commands, 21
Using WebDNA, 246

Context

LineItems, 105
Contexts

! Comment, 241
AddLineItem, 101
Append, 73
AppendFile, 79, 165
AppleScript, 174
BoldWords, 140
Capitalize, 141
Context Parameters, 245
Context Variables, 245
ConvertChars, 142
ConvertWords, 144
CountChars, 143
CountWords, 143
DDESend, 176
Decrypt, 146
DOS, 177
Encrypt, 146
ExclusiveLock, 75, 81
FileInfo, 170
Format, 132, 148
FormVariables, 220
FoundItems Context, 63
Grep, 152
HideIf, 124
HTML1, 125
HTML2. See HTML1 Context
HTML3. See HTML1 Context
IfThenElse, 126
Input, 153
Interpret, 181
ListCookies, 190
ListDatabases, 82
ListFields, 83
ListFiles, 171
ListMIMEHeaders, 192
ListPath, 154
ListVariables, 84, 194, 199, 201,

204, 206, 217, 218, 222, 224, 228,
231

ListWords, 156
Loop, 226
LowerCase, 157
Math, 134
Middle, 158
Object, 182

 292 • WebDNA

OrderFile, 107
Raw, 158
RemoveHTML, 160
Replace, 90
ReplaceFoundItems, 94
Replacing Commands with Contexts,

23
ReturnRaw, 185
Search Context, 64
Searching, 21
SendMail, 238
SetHeader, 118
SetLineItem, 120
Shell, 177
ShowIf, 128
ShowNext, 69
Spawn, 185
SQL, 71, 96
Switch Case, 128
Tag Parameters, 245
TCPConnect, 186
TCPSend, 187
Text, 160
UnURL, 162
UpperCase, 163
URL, 163
Using Contexts vs. Commands, 21
Using WebDNA, 244
WaitForFile, 173
WriteFile, 173

Database Design, 13
Database Format, 268
Databases, 73

Append Command, 77
Append Context, 73
AppendFile Context, 79
CloseDatabase Tag, 73
CommitDatabase Tag, 73
Delete Command, 78
Delete Tag, 81
ExclusiveLock Context, 75, 81
FlushDatabases Tage, 82
ListDatabases Context, 82
ListFields Context, 83
LookUp Tag, 83
Quit Command, 89
Replace Commands, 93
Replace Context, 90

ReplaceFoundItems Context, 94
SQL Context, 96

Dates and Times, 131
Date Tag, 131
Format Context, 132
Math Context, 134
Time Tag, 140

Dreamweaver Integration, 253
Email Format, 272
Encrypting Templates, 249

Header
Encrypting, 250

File Formats, 268
Files

Uploading, 262, 263
Files and Folders, 165

AppendFile Context, 165
CopyFile Tag, 167
CopyFolder Tag, 166, 167, 168
CreateFolder Tag, 167
DeleteFile Tag, 167
DeleteFolder Tag, 168
FileInfo Context, 170
ListFiles Context, 171
MoveFile Tag, 172
RenameFile Tag, 172
WaitForFile Context, 173
WriteFile Context, 173

Form Variables. See WebDNA Tags
Formats

Browser info.txt, 271
Database, 268
Email, 272
File, 268
Order File, 270
Shopping Cart, 270

Formulas, 273
Generating Online Banner Ads, 252
Glossary, 289
HTML Forms, 11
License, 286
ListCookies Context

Setting Cookies, 191
Logging Information, 24
Math Context

Dates, 136
Functions, 138
Times, 137

http://yourserver.com/xx.tpl?command=FlushDatabases
http://yourserver.com/xx.tpl?command=FlushDatabases

 Programmer Guide • 293

Variables, 138
Miscellaneous, 217

! Comment Context, 241
FormVariables Context, 220
FreeMemory Tag, 221
Include Tag, 223
LastRandom Tag, 224
ListVariables Context, 84, 194,

199, 201, 204, 206, 217, 218, 222,
224, 228, 231

Loop Context, 226
Platform Tag, 227
Random Tag, 227
SendMail Context, 238
ThisURL Tag, 241
Version Tag, 241

Near Real Time Processing, 15
Order File Format, 270
Order Files

Using Exernal Accounting Software
with, 267

Password
Protect Tag, 165
Username Tag, 165

Passwords, 164, 194
Authenticate Tag, 164

POP Mailbox
Shared

Using, 251
Raw Command, 159
Real Time Processing, 15
Searching

FoundItems Context, 63
LookUpTag, 63
Search Command, 65
Search Context, 64
ShowNext Context, 69
SQL Context, 71

Security, 255
MacIntosh WebDNA Security Notes,

256, 263, 264
Threats

Areas to Watch for, 262
Security Threats, 262
SendMail Context

Emailer Error Codes, 239
Header Fields, 240

Shared POP Mailbox

Using, 251
Shopping

Add Command, 98
AddLineItem Context, 101
Cart Tag, 104
Clear Command, 104
ClearLineItems Tag, 105
LineItems Context, 105
NewCart Command, 107
NewCartSearch Command, 106
OrderFile Context, 107
Purchase Command, 110
Purchase Tage, 110
Remove Command, 117
RemoveLineItem Tag, 117
SetHeader Context, 118
SetLineItem Context, 120
Show Cart Command, 122
ValidCard Tag, 123

Shopping Cart Format, 270
Shopping Cart Transaction Processing, 15

Order Collection, 17
Order Management, 19
Order Processing, 18

Showing and Hiding, 124
HideIf Context, 124
HTML1 Context, 125
HTML2 Context. See HTML1 Context
HTML3 Context. See HTML1 Context
IfThenElse Context, 126
ShowIf Context, 128
ShowPage Command, 129
Switch Case Context, 128

Site Design, 12
Subscription

Talk List, 251
Support, 288
Tags

Authenticate, 164
BrowserName, 189
Cart, 104
ClearLineItems, 105
CloseDatabase, 73
Command, 175
CommitDatabase, 73
CopyFile, 167
CopyFolder, 166, 167, 168
CreateFolder, 167

http://isd.smithmicro.com/
http://www.smithmicro.com/
http://www.pacific-coast.com/
http://www.pacific-coast.com/

 294 • WebDNA

Date, 131
DDEConnect, 175
Delete, 81
DeleteFile, 167
DeleteFolder, 168
ElapsedTime, 178
FlushDatabase, 179
FlushDatabases, 82
FreeMemory, 221
GetCookie, 189
GetMIMEHeader, 190
Header

Encrypting, 250
Include, 223
IPAddress, 190
IsSecureClient, 190
LastRandom, 224
LookUp, 83
LookUpTag, 63
MoveFile, 172
Password, 165
Platform, 227
Protect, 165
Purchase, 110
Random, 227
Redirect, 184
Referrer, 193
RemoveLineItem, 117
RenameFile, 172
SetCookie, 193
SetMIMEHeader, 194
ThisURL, 241
Time, 140
Username, 165
ValidCard, 123
Version, 189, 241
WebDNA, Using, 242

Talk List
Subscription and Archive, 251

TeaRoom Database
Acknowledging the Order, 59
Adding Items to the Shopping Cart, 38
Development of, 30, 60
Entering the Site, 31
Shopping for Products By Category,

34
The TeaRoom Database, 31
Tutorial

Overview, 30
Using the Product Detail Page, 47
Using the Purchase/Invoice Page, 51
Using the Shopping Cart Page, 43

Technical, 174
AppleScript Context, 174
Command Tag, 175
DDEConnect Context, 175
DDESend Context, 176
DOS Context, 177
ElapsedTime Tag, 178
FlushCache Command, 178
FlushDatabase Tag, 179
FlushDatabases Command, 180
Interpret Context, 181
Object Context, 182
Raw Command, 184
Redirect Tag, 184
ReturnRaw Context, 185
Shell Context, 177
Spawn Context, 185
TCPConnect Context, 186
TCPSend Context, 187
Version Tag, 189

Template Design, 14
Templates

Encrypting, 249
Text Manipulation, 140

BoldWords Context, 140
Capitalize Context, 141
ConvertChars Context, 142
ConvertWords Context, 144
CountChars Context, 143
CountWords Context, 143
Decrypt Context, 146
Encrypt Context, 146
Format Context, 148
Grep Context, 152
Input Context, 153
ListPath Context, 154
ListWords Context, 156
LowerCase Context, 157
Middle Context, 158
Raw Command, 159
Raw Context, 158
RemoveHTML Context, 160
Text Context, 160
UnURL Context, 162

http://www.yourdomain.com/entry.html

 Programmer Guide • 295

UpperCase Context, 163
URL Context, 163

Topics
Advanced WebMerchant, 266

Triggers, 3, 277, 281, 283
Understanding WebDNA, 1
Uploading Files, 262, 263
Using a Text Editor vs. HTML Editor, 19
Using Shared POP Mailbox, 251
Using WebDNA Commands, 246
Using WebDNA Contexts, 244

Context Parameters, 245
Context Variables, 245
Tag Parameters, 245

Warranty Agreement, 286
Web Server

How WebDNA Acts on a Web Server
Request, 27

WebDNA
Advanced Uses of, 249
How WebDNA Acts on a Web Server

Request, 27
Preparing Your Site for Use With, 28
Request Processing With, 29
Theory of Operation, 26
Tutorial, 26
What is WebDNA, 26

WebDNA Advanced Uses
Dreamweaver Integration, 253

Encrypting Templates, 249
Generating Online Banner Ads, 252
Security, 255
Talk List Subscription and Archive,

251
Using Shared POP Mailbox, 251

WebDNA Benefits, 2
WebDNA Commands, 7
WebDNA Contexts, 4
WebDNA Parameters, 8
WebDNA Reference, 62
WebDNA Tages, 3
WebDNA Tags

Form Variables, 244
Italic Text, 243
Parameters, 242
Paths, 243
Preferences, 242
Using, 242

WebMerchant
Advanced Topics, 266

WebMerchant Advanced Topics
Account Authorizer

using, 267
External Accounting Software, using

with order files, 267
What is WebDNA, 1
Working with Tables, 20

	About This Manual
	Structure
	Conventions

	Contents
	Chapter 1 (Understanding WebDNA
	What Is WebDNA?
	WebDNA Benefits

	Definitions
	Triggers
	WebDNA Tags
	WebDNA Contexts
	WebDNA Commands
	WebDNA Parameters
	Method 1: Tag or context requires a single parameter
	Method 2: Tag includes multiple parameters

	Related Topics
	HTML Forms
	Site Design
	Step 1: Outline Your Web Site
	Step 2: Define the Steps Needed to Create the Site
	Step 3: Begin Simply

	Database Design
	Template Design

	Shopping Cart Transaction Processing
	Order Collection
	Order Processing
	Order Management

	Using a Text Editor vs. HTML Editor
	Working with Tables

	Using Contexts vs. Commands
	Searching

	Replacing Commands with Contexts
	Logging Information

	Chapter 2 (WebDNA Tutorial
	WebDNA Theory of Operation
	What is WebDNA
	How WebDNA Acts on a Web Server Request
	Preparing Your Site for use with WebDNA
	Request Processing with WebDNA

	Development of the TeaRoom Database
	Tutorial: Overview
	The TeaRoom Database
	Step 1: Entering the Site
	Step 2: Shopping for Products by Category
	Step 3: Adding Items to the Shopping Cart
	Step 4: Using the Shopping Cart Page
	Step 5: Using the Product Detail Page
	Step 6: Using the Purchase/Invoice Page
	Step 7: Acknowledging the Order

	WebDNA Lab
	Where to Go from Here?

	Chapter 3 (WebDNA Reference
	WebDNA 5.0 At-A-Glance Reference
	Searching
	[FoundItems] Context
	[LookUp] Tag
	[Search] Context
	Search Command
	Searching Comparisons
	[ShowNext] Context
	[SQL] Context

	Databases
	[CloseDatabase] Tag
	[CommitDatabase] Tag
	[Append] Context
	[AddFields] Context
	Append Command
	Delete Command
	[AppendFile] Context
	[ExclusiveLock] Context
	
	Description

	[Delete] Tag
	[FlushDatabases] Tag
	[ListDatabases] Context
	[ListFields] Context
	[LookUp] Tag
	[Table] Context
	[Quit] Command
	[Replace] Context
	Replace Command
	[ReplaceFoundItems] Context
	[SQL] Context

	Shopping
	Add Command
	[AddLineItem] Context
	[Cart] Tag
	Clear Command
	[ClearLineItems] Tag
	[LineItems] Context
	NewCartSearch Command
	NewCart Command
	[OrderFile] Context
	[Purchase] Tag
	Purchase Command
	[RemoveLineItem] Tag
	Remove Command
	[SetHeader] Context
	[SetLineItem] Context
	ShowCart Command
	[ValidCard] Tag
	
	
	
	
	Parameters

	Showing and Hiding
	[HideIf] Context
	[HTML1] Context
	[HTML2] Context
	[HTML3] Context
	[If][Then][Else] Context
	[ShowIf] Context
	[Switch][Case] Context
	ShowPage Command

	Dates and Times
	[Date] Tag
	[Format] Context
	[Math] Context
	Dates
	Times
	Variables
	Functions

	[Time] Tag

	Text Manipulation
	[BoldWords] Context
	[Capitalize] Context
	[ConvertChars] Context
	[CountChars] Context
	[CountWords] Context
	[ConvertWords] Context
	[Decrypt] Context
	[Encrypt] Context
	[Format] Context
	[GetChars] Context
	[Grep] Context
	[Input] Context
	[ListPath] Context
	[ListWords] Context
	[LowerCase] Context
	[Middle] Context
	[Raw] Context
	Raw Command
	[RemoveHTML] Context
	[Text] Context
	[UnURL] Context
	[URL] Context
	[Uppercase] Context

	Passwords
	[Authenticate] Tag
	[Password] Tag
	[Protect] Tag
	[Username] Tag

	Files and Folders
	[AppendFile] Context
	[CalcFileCRC32] Tag
	[CopyFile] Tag
	[CopyFolder] Tag
	[CreateFolder] Tag
	[DeleteFile] Tag
	[DeleteFolder] Tag
	[FileCompare] Tag
	[FileInfo] Context
	[ListFiles] Context
	[MoveFile] Tag
	[RenameFile] Tag
	[WaitForFile] Context
	[WriteFile] Context

	Technical
	[AppleScript] Context
	[Command] Tag
	[DDEConnect] Context
	[DDESend] Context
	[DOS] Context
	[Shell] Context
	[ElapsedTime] Tag
	FlushCache Command
	[FlushDatabases] Tag
	FlushDatabases Command
	[Interpret] Context
	[Object] Context
	Raw Command
	[Redirect] Tag
	[ReturnRaw] Context
	[Spawn] Context
	[TCPConnect] Context
	[TCPSend] Context
	[Version] Tag

	Browser Info
	[BrowserName] Tag
	[GetCookie] Tag
	[GetMIMEHeader] Tag
	[IPAddress] Tag
	[IsSecureClient] Tag
	[ListCookies] Context
	Setting Cookies

	[ListMIMEHeaders] Context
	[Referrer] Tag
	[SetCookie] Tag
	[SetMimeHeader] Tag

	XML
	[XMLParse] Context
	[XMLNodes] Context
	[XMLNodesAttributes] Context
	[XSL] Context
	[XSLT] Context

	Miscellaneous
	[ArraySet] Context
	[ArrayGet] Context
	[FormVariables] Context
	[FreeMemory] Tag
	[Function] Context
	[Include] Tag
	[LastRandom] Tag
	[ListVariables] Context
	[Loop] Context
	[Platform] Tag
	[Random] Tag
	[Return] Context
	[Scope] Context
	[SendMail] Context
	Emailer Error Codes

	Header Fields
	[ThisUrl] Tag
	[Version] Tag
	[!] Comment Context

	Using WebDNA Tags
	Preferences
	Parameters
	Italic Text
	Paths
	Form Variables

	Using WebDNA Contexts
	Tag Parameters
	Context Parameters
	Context Variables

	Using WebDNA Commands
	Command= Notation

	Chapter 4 (Advanced Uses of WebDNA
	Encrypting Templates
	How to Encrypt Templates
	Encrypting the Header Tag

	Talk List Subscription and Archive
	Using Shared POP Mailbox

	Generating Online Banner Ads
	Dreamweaver Integration
	XML Syntax Explanation
	Security
	Macintosh WebDNA Security Notes
	General Assumptions
	Different Kinds of Attacks

	Areas to Watch for security threats

	Uploading Files
	WebDNA Content Management System
	What is WebDNA CMS?
	
	Content Management System Component

	Using WebDNA CMS

	Advanced WebMerchant Topics
	Using Account Authorizer
	Use of external accounting software with order files

	Appendices
	File Formats
	Database Format
	Shopping Cart/Order File Format
	Browser Info.txt Format
	Email Format

	Formulas
	ISP Sandbox
	Pre and Post Parse Scripts
	Triggers
	License and Limited Warranty Agreement
	Support
	Glossary

